

IOT (CSE) COURSE STRUCTURE

I Year I Semester

Sl. No.	Course Code	Course Title	L	Т	Р	С
1	22MT103	Linear Algebra and Ordinary Differential Equations	3	2	0	4
2	22PY107	Engineering Physics	3	0	2	4
3	22EE101	Basics of Electrical and Electronics Engineering	2	0	2	3
4	22CT108	Environmental Studies	2	2	0	3
5	22CY107	IT Tools and Cyber Security	0	2	2	2
6	22CS107	Programming in C	2	0	4	4
7	22EN102	English Proficiency and Communication Skills	0	0	2	1
8	22SA106	Physical Fitness	0	0	2	1
9	22SS101	Constitution of India	0	2	0	1
10	22SA104	Orientation Session		2	0	1
		Total		10	14	24
		Total	3	66 H1	rs	24

I Year II Semester

Sl. No.	Course Code	Course Title	L	Т	Р	С
1	22MT115	Calculus	3	2	0	4
2	22CT106	Engineering Chemistry	3	0	2	4
3	22ME101	Engineering Graphics	2	0	2	3
4	22CS108	Problem Solving using Python	2	0	2	3
5	22EN104	Technical English Communication	2	0	2	3
6	22MS102	Management Science	2	2	0	3
7	22SA105	Self-Empowerment & Gender Sensitization	0	2	0	1
8	22SA107	Life Skills	0	0	2	1
9	22SS102	Indian Knowledge Systems	0	2	0	1
		Total	14	8	10	23
		Total	3	2 Hr	rs -	23

II real	'I Semester					
Sl. No.	Course Code	Course Title	L	Т	Р	C
1	22PY201	Physics for Quantum Computing	2	0	2	3
2	22CI201	Data Structures and Algorithms	2	2	2	4
3	22CI202	Design Thinking & Engineering Orientation	0	0	1	1
4	22SA218	Life skills / UHV	0	0	2	1
5	22CS204	Computer Networks	3	0	2	4
6	22CI203	Digital Logic Design & COA	2	0	2	4
7	22MT202	Discrete Mathematical Structures	3	2	0	4
		Total	14	9	12	25
		Total		35		25

II Year I Semester

II Year II Semester

Sl. No.	Course Code	Course Title	L	Т	Р	С
1	22ST202	Probability And Statistics		2	0	4
2	22CI204	Introduction to IoT	3	0	2	4
3	22AM205	Object-Oriented Programming	2	0	4	4
4	22CI205	Microcontrollers and Microprocessors	3	0	2	4
5	22CI206	Field project	0	0	2	1
8		Open Elective – 1	3	0	0	3
		Total	12	2	16	20
9		Minor / Honors – 1	3	0	2	4
		Total	15	2	18	24
		Total		35		24

III Year I Semester

Sl. No.	Course Code	Course Title	L	Т	Р	C
1	22TP301	Soft Skills Lab		0	2	1
2	22CI301	Wireless Sensor Networks & IoT Standards	3	0	2	4
3	22CY205	Algorithms and Analysis	2	2	2	4
4	22CI302	Industry Interface Course	1	0	0	1
5		Department Elective – 1		0	2	4
6		Department Elective – 2	3	0	0	3
7		Open Elective – 2	3	0	0	3
		Total	18	2	12	21
8		Minor / Honors – 2		0	2	4
		Total		2	14	25
		Total	3	6 Hr	'S	25

III Year II Semester

Sl. No.	Course Code	Course Title	L	Т	Р	C
1	22TP302	Quantitative Aptitude and Logical Reasoning		4	0	2
2	22CS201	Database Management Systems	2	0	2	4
3	22CI303	Operating System for IoT	2	0	2	3
4	22CS303	Web Technologies	2	0	2	4
5	22CI304	Inter Departmental Project		0	2	1
6		Department Elective – 3	3	0	2	4
7		Open Elective – 3	3	0	0	3
		Total	12	4	10	21
8		Minor / Honors – 3		0	2	4
		Total		4	12	25
		Total	3	1 Hr	'S	25

IV Year I Semester

Sl. No.	Course Code	Course Title	L	Т	Р	С
1	22CS401	Cryptography and Network Security	3	0	2	4
2	22CI401	Cloud and Fog Computing for IoT	3	0	2	4
3	22C1402	Ethics for IoT Professionals	0	0	4	2
4		Department Elective – 4		0	2	4
5		Department Elective – 5	3	0	2	4
6		Department Elective – 6	2	0	2	3
		Total	15	0	10	20
6		Minor / Honors – 4	3	0	2	4
		Total		0	12	24
		Total		30		24

IV Year II Semester

Sl. No.	Course Code	Course Title		Т	Р	C
1	22CI402 / 22CI403	Internship / Project Work	0	2	22	12
		Total	0	2	22	12
2		Minor / Honors – 5 (for project)	0	2	6	4
		Total	0	4	28	16
		Total		32		16

Department Electives

Sl. No.	Course Code	Course Title	L	Т	Р	C
Odd Seme	ester					
1	22CI801	Sensors, Actuators and Signal Processing	3	0	2	4
2	22CI802	Dynamic Paradigm in IoT	3	0	2	4
3	22CI803	IoT Device Programming	3	0	2	4
4	22CI804	IoT Security	3	2	0	4
5	22CI805	Big Data Analytics	3	2	0	4
6	22CI806	Web Technologies	2	0	4	4
7	22CI807	Wearable Computing	3	0	2	4
8	22CI808	Augumented Reality/Virtual Reality	3	0	2	4
Even Sem	ester					
9	22CS808	Mobile Application Development	3	0	2	4
10	22CI809	Data Science for Internet of Things	3	0	2`	4
11	22CI810	Descriptive Analytics for IoT	3	0	2	4
12	22CI811	Vulnerability Assessment and Penetration Testing	3	0	2	4
13	22CI812	Operating System for IoT	3	2	0	4

Honours for IoT

Sl.No	Course Title	L	Т	Р	С
22CI951	Software Defined Networking	3	2	0	4
22CI952	Industry IoT 4.0	3	2	0	4
22CI953	Drone Technology	3	2	0	4
22CI954	Data Management in IoT	3	2	0	4
22CI955	IoT Device and Infrastructure Management	3	2	0	4
22CI956	Theory of Computation	3	2	0	4
22CI957	Compiler Design	3	2	0	4

22MT103–LINEAR ALGEBRA AND ORDINARY DIFFERENTIAL EQUATIONS

Hours per week:

L	Т	Р	С
3	2	0	4

PREREQUISITE KNOWLEDGE: Basics of matrices, Differentiation and Integration.

COURSE DESCRIPTION AND OBJECTIVES:

The goal of this course is to build a grasp of the principles of mathematics through matrices, differential equations and applications that serves as an essential tool in several engineering applications.

MODULE-1

12L+8T+0P=20 Hours

UNIT-1 MATRICES

Definition of matrix; Types of matrices; Algebra of matrices, adjoint of a matrix, inverse of a matrix through adjoint and elementary row operations, Rank of a matrix, Echelon form, Normal form. Eigen values and Eigen vectors (up to 3 x 3 matrices only) and properties (without proofs).

UNIT-2

12L+8T+0P=20 Hours

APPLICATIONS OF MATRICES

Consistency of system of linear equations, Solution of system of linear equations having unique solution and involving not more than three variables by Gauss elimination method and Gauss Jordan method

Gauss Jordan method.

Cayley-Hamilton theorem (without proof), Power of a matrix, Inverse of a matrix. Strength of materials and strength of beams using Eigen value and Eigen vectors.

PRACTICES:

- Compute inverse of a matrix if exists.
- Explain with suitable examples how rank of matrix is independent of the elementary operations.
- Explain with suitable examples how rank of matrix is unique.
- Discuss with suitable examples when eigen values and eigen vectors are possible for a matrix.
- Discuss the possibility of solution of a system of equations.
- Discuss when inverse and power of a matrix exist using Cayley-Hamilton theorem.

MODULE-2

UNIT-1

ORDINARY DIFFERENTIAL EQUATIONS (ODE)

First Order Differential Equations: Introduction to ODE, variable separable method, homogenous and non-homogenous differential equations, linear differential equations, Bernoulli's equations.

Second Order Differential Equations: Linear differential equations with constant coefficients with **RHS** of the form e^{ax} , x^n , sin(ax) or cos(ax).

UNIT-2

12L+8T+0P=20 Hours

APPLICATIONS OF ODE

Applications of ODE: Newton's law of cooling, Law of natural growth and decay, LR Circuit.

PRACTICES:

- Check the order and degree of an ODE.
- Find solution for any four ordinary differential equations by applying suitable method.
- Find numerical solution for any four ordinary differential equations by applying suitable method.
- Discuss some applications of ODE.

SKILLS:

- > Find rank of a matrix using different methods.
- > Compute the eigen values and eigen vectors of a matrix.
- > Find analytical solution of a differential equation using appropriate method.
- > Demonstrate any one numerical method to solve differential equation.

COURSE OUTCOMES:

Upon successful completion of this course, students will have the ability to:

CO No.	Course Outcomes	Blooms Level	Module No.	Mapping with POs
1	Apply the concepts of rank, eigen values and eigenvectors of a matrix and finding inverse of a matrix and powers of a matrix.	Apply	1	1, 2, 9, 10, 12
2	Apply differential equations in real life problems.	Apply	2	1, 2, 9, 10, 12
3	Analyse the solution of a system of linear equations and find it.	Analyze	1	1, 2, 9, 10, 12
4	Inspect the analytical method for solving differential equations and applications.	Analyze	2	1, 2, 9, 10, 12

12L+8T+0P=20 Hours

TEXT BOOKS:

- 1. N. P. Bali, K. L. Sai Prasad, "A Textbook of Engineering Mathematics I, II, III", 2nd edition Universal Science Press, New Delhi, 2018.
- 2. B. S. Grewal,"Higher Engineering Mathematics", 44th edition, Khanna Publishers, 2018.

REFERENCE BOOKS:

- 1. Erwin Kreyszig, "Advanced Engineering Mathematics", 10th Edition, John Wiley & Sons, Inc, 2015.
- 2. H. K. Dass and Er. RajanishVerma, "Higher Engineering Mathematics", 3rd revised edition, S. Chand & Co., 2015.
- 3. B. V. Ramana, "Advanced Engineering Mathematics", TMH Publishers, 2020.
- 4. T. K.V. Iyengar et al, "Engineering Mathematics, I, II, III", S. Chand & Co., New Delhi, 2018.

Image Source: https://www.amazon.com/Differential-Equations/dp/B01H30X2JA

22PY105–SEMICONDUCTOR PHYSICS AND

ELECTROMAGNETICS

Hours per Week:

L	Т	Р	C
2	0	2	3

PREREQUISITE KNOWLEDGE: Basics of vectors and semiconductors

COURSE DESCRIPTION AND OBJECTIVES:

This course ensures commensurable understanding of electrostatics and magnetostatics. It enunciates the electron dynamics in solids through the conceptual grasp of principles of quantum mechanics. This embark perspective outlook on optoelectronic devices and optical fibres in the backdrop of semiconductor physics.

MODULE-1

UNIT-1

10L+0T+10P = 20 Hours

ELECTROSTASTICS AND MAGNETOSTASTICS

Electrostatics: Introduction to Vector analysis, Computation of electric field and potential due to Point charge, linear charge density, surface charge density, bulk charge density, Coulomb's law, Electric field due to line of charges, Gauss law, Differential Form of Gauss law, Applications, Electric field due to a charged sphere – inside, on the surface, and outside, Electric field due to a spherical shell- inside and outside.

Magnetostatics: Introduction to magnetic force – Lorentz force, Biot-Savart's law, Magnetic field due to a linear conductor – magnetic field due to a circular loop –Ampere's law, Faraday's law in integral form; Lenz's law, Maxwell's equations – correction to Ampere's law.

UNIT-2

6L+0T+6P = 12 Hours

QUANTUM MECAHNICS AND FREE ELECTRON THEROY

Quantum mechanics: Introduction to Quantum mechanics; Concepts of wave and particle duality of radiation; de Broglie's concepts of matter waves, Schrödinger's time-independent wave equation – Eigen values and Eigen functions; Particle confined in a one-dimensional infinite Potential square well.

Free electron theory of solids: Classical and Quantum free electron theory of metals; Fermi- Dirac distribution; Density of states – derivation -Bloch's Theorem (Qualitative); Classification of solids based on energy bands.

PRACTICES:

- Photoelectric effect-Determination of plancks constant.
- Stewart & Gee's Experiment- Study of magnetic field along the axis of a current carrying coil.
- Melde's Experiment determination of the frequency of tuning fork.
- Sonometer- Determination of AC frequency

MODULE-2

UNIT-1

SEMICONDUCTOR PHYSICS AND OPTOELECTRONICS

Introduction, Classification of Semiconductors, Direct and indirect band gap semiconductors, Intrinsic semiconductors; Variation of Intrinsic carrier concentration with temperature, Fermi level, and conductivity; Extrinsic semiconductor, the effect of temperature on carrier concentration in extrinsic semiconductors, Band diagrams of extrinsic semiconductors; Hall effect, Classification of optoelectronic devices; Photo voltaic cell, LED.

UNIT-2

8L+0T+8P = 16 Hours

LASERS AND OPTICAL FIBERS

Introduction to lasers, Population inversion & pumping processes, Semiconductor diode laser, Applications of lasers. Optical fiber-Numerical Aperture, types of optical fibres, Fiber optic communication system.

PRACTICES:

- Laser Determination of wavelength.
- Optical fiber Determination of Numerical aperture Acceptance angle.
- Determination of Energy Band gap of p-n junction diode.
- Hall Effect Determination of Hall coefficient.
- Solar cell Determination of Fill factor & efficiency.

SKILLS:

- > Able to compute the electric and magnetic field and potentials in different applications
- > Apply the quantum laws to understand the electron dynamics of solids
- Realizing the importance of optoelectronic devices

COURSE OUTCOMES:

Upon successful completion of the course, students will have the ability to:

CO No.	Course outcomes	Blooms level	Module No.	Mapping with POs
1	Apply Maxwell's equations to unravel electron dynamics in amidst of electric and magnetic fields.	Apply	1	1, 2, 4, 5, 9, 10
2	Discriminate solids based on principles of quantum mechanics.	Analyse	1	1, 2, 3, 4, 9, 10
3	Assessment of semiconductors in the perspective of optoelectronic devices.	Evaluate	2	1, 3, 4, 5, 6, 9, 10
4	Comprehend the knowledge of Lasers and optical fibers to conceive their applications in vivid domains.	Apply	2	1, 2, 3, 5, 9, 10

- 1. S.O. Pillai, "Solid State Physics", New age International publishers, 8th edition, 2018.
- 2. H.C. Varma, "Classical Electromagnetism", Bharathi Bhavan Publication, 2022.

REFERENCE BOOKS:

- 1. D. Halliday, R. Resnick and J. Walker, "Fundamentals of Physics", 6th edition, John Wiley and Sons, New York, 2001.
- 2. M.N. Avadhanulu, "Engineering Physics", S. Chand publications 2010.
- 3. Charles Kittel, "Introduction to Solid State Physics", 7th edition, Wiley, Delhi, 2007.
- 4. Donald A. Neamen, "Semiconductor Physics and Devices: Basic Principle", 4th edition, McGraw-Hill, New York, 2012.
- 5. David J. Griffiths, "Introduction to Electrodynamics", 3rd edition, Prentice Hall of India, New Delhi, 2012.
- 6. N.W. Ashcroft and N.D. Mermin, "Solid State Physics", International student edition, Brooks Cole, 2008.

22EE101–BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING

Hours per week:					
L	Т	Р	С		
2	0	2	3		

PREREQUISITE KNOWLEDGE: Electrostatics and Electromagnetism

COURSE DESCRIPTION AND OBJECTIVES:

This course provides an insight into the functioning of basic electrical components like resistor, inductor and capacitor. It deals with the constructional and operational details of AC machines. It also deals with the basic electronic components like P-N junction diode, Zener diode, Transistor and their characteristics.

MODULE-1

8L+0T+8P=16 Hours

FUNDAMENTALS OF ELECTRIC CIRCUITS

DC Circuits: Concept of network, Active and passive elements, Voltage and current sources, Concept of linearity and linear network, Unilateral and bilateral elements, R, L and C as linear elements, Ohm's Law, Kirchhoff's Laws, Application to simple series, Parallel circuits, Mesh and nodal analysis of resistive circuits with DC source.

AC circuits: Generation of AC voltage, Frequency, Average value, R.M.S. value, Form factor, Peak factor for sinusoidal only.

UNIT-2

UNIT-1

8L+0T+8P=16 Hours

SEMICONDUCTOR DEVICES

Classification of semiconductors, P-N junction diode -operation and its characteristics, Half wave rectifier - operation, efficiency; Full wave rectifiers -types, operation, efficiency; Zener diode and its characteristics, Zener diode as Voltage regulator.

Bi polar junction transistor- operation, types (NPN & PNP)

PRACTICES:

- 1. Verification of Ohm's law.
- 2. Verification of Kirchhoff's current law.
- 3. Verification of Kirchhoff's voltage law.
- 4. Determination of R.M.S. Values of sinusoidal waveform.
- 5. Verification of PN junction diode characteristics under both forward and reverse bias.
- 6. Verification of Zener diode characteristics under reverse bias.

MODULE-2

8L+0T+8P=16 Hours

ANALYSIS OF AC CIRCUITS

Analysis of single- phase ac circuits consisting of R, L, C, RL, RC (series and parallel) (simple numerical problems). Introduction to three phase system, Relation between phase and line quantities of voltages and currents in star and delta connected systems (Elementary treatment only).

UNIT-2

UNIT-1

AC MACHINES

Electromagnetism: Concepts of Magneto motive force, Reluctance, Flux and flux density, Concept of self-inductance and mutual inductance, Coefficient of coupling .

Static AC Machine: Principle of operation of single phase transformer, Constructional features, EMF equation (simple numerical problems).

Rotating AC Machine Principle of operation of three phase induction motor, Slip ring and squirrel cage motors, Torque equation; Constructional details of synchronous machine.

PRACTICES:

- 1. Transformation ratio of a single phase transformer at different loads.
- 2. Measurement of Energy in single phase resistive load circuit.
- 3. Measurement of Power in single phase resistive load circuit
- 4. Determination of impedance in complex AC circuits.
- 5. Verification of line and phase quantities in a balanced three phase system

SKILLS:

- > Distinguish between linear and nonlinear elements by looking at VI characteristics.
- Develop a simple loop generator.
- Design a voltage regulator using Zener diode.
- > Design a half wave rectifier using PN junction diode.
- > Design a full wave rectifier using PN junction diodes.

COURSE OUTCOMES:

Upon successful completion of this course, students will have to ability to:

CO	Course Outcomes	Blooms	Module	Mapping with
No.		Level	No.	POs
1	Analyze the resistive circuits with independent	Analyze	1,2	1,2,6,9
	sources and find its solution.			
2	Solve the AC (single and three phase) and DC	Apply	1,2	1,2,9,12
	circuits using different methods.			
3	Apply the concepts of electromagnetism for its	Apply	2	1,2,3,9,12
	applications.			
4	Examine the different electrical equipment.	Evaluate	2	1,2,9,12
5	Acquire the knowledge of semiconductor devices	Create	1	1,2,3,9,12
	to create circuits.			

- 1. V. K. Mehta, "Principles of Electrical Engineering and Electronics", S.Chand& Co., Publications, New Delhi, 2019.
- 2. D.P. Kothari, "Basic Electrical and Electronics Engineering", TMH, New Delhi, 2017.

REFERENCE BOOKS:

- 1. Millman and Halkias, "Electronic Devices and Circuits", Mc Graw Hill, 2006.
- 2. A.K. Thereja and B.L.Thereja, "Electrical Technology", Vol.–II, S. Chand & Co., Publications, 2020.
- 3. U. Bakshi and A. Bakshi, "Basic Electrical Engineering", 1st edition, Technical Publications, Pune, Nov 2020.

Source : <u>https://vita.vision.org.in/emerging-technologies-in-electrical-engineering/</u>

22CS103–IT WORKSHOP AND TOOLS

Hours per week:					
L T P C					
0	2	4	3		

PREREQUISITE KNOWLEDGE: Basics of Computer knowledge, Applications of Computers.

COURSE DESCRIPTION AND OBJECTIVES:

This course enables the students to learn various components of a computer system, assembly and disassembly of various components, troubleshooting, installation of OS and other applications. Also practicing of the usage of software tools such as word, excel, ppt and LaTex, text and image editors.

MODULE-1

0L+16T+32P=48Hours

PRACTICING EXERCISES ON HARDWARE DEVICES:

- Demo of various physical components of a computer system.
- Integration of various components of a computer system and dismantling.
- Installation of OS in a computer system through various storage devices.
- Installation of OS in a computer system through cloning.
- Demonstration of booting process of a computer system
- Detection of faulty components such as hard disk, RAM, SMPS, network interface in a computer system.
- Demonstration of program execution environment
- Demo of Windows/Linux file system.
- Demo of location OS files in the file system (Windows/Linux).
- Configuration of network interface in a computer system and troubleshooting of network connectivity issues.
- Demo of shell scripts for maintenance and administration of a computer system
- Usage of editor tools
- Installation of software tools such as C compiler / interpreter, Java IDE, Python IDLE, Pycharm etc.
- Installation of antivirus software, web browsers and application of servers such as Apache server etc.

SKILLS:

- > Integration of various components of a computer system.
- > Trouble shooting of components of a computer system.
- > Installation of OS and its various tools/applications.
- ➤ Usage of IT tools such as MS-Word, LaTex etc.

ACTIVITIES:

- > Assemble and dis-assemble of various components of a computer system.
- Connect devices to various interfaces —(a) Serial Port, (b) Parallel Port, (c) USB Port, (d) Fire wire, (e) RJ45 connector, (f) VGA connector, (g) Audio plugs (Line-In, Line-Out and microphone), (h) PS/2 Port, and (h) SCSI Port.
- ➢ Install Linux/windows OS in your computer.
- > Identification of different Computer hardware problems and troubleshooting of the same.
- > Editing of image, audio and video files using different editor tools.

Build Ethernet and Wi-Fi LANs.

MODULE-2

PRACTICING EXERCISES USING SOFTWARE TOOLS:

- Prepare your resume using MS-word
- Design a "Birthday Invitation" card.
- Design a Timetable given to you at the beginning of the semester without grid lines.
- Using Draw Table feature, insert a 7-column, 6-row table to create a calendar for the current month.
 - a. Enter the names of the days of the week in the first row of the table.
 - b. Centre the day names horizontally and vertically.
 - c. Change the font and font size as desired.
 - d. Insert a row at the top of the table.
 - e. Merge the cells in the row and enter the current month and year using a large font size.
 - f. Shade the row.
 - g. Enter and right-align the dates for the month in the appropriate cells of the table.
 - h. Change the outside border to a more decorative border. Identify two important dates in he calendar and shade them.
- Prepare mark sheet using MS-Excel.
- Create a pivot table to analyse your worksheet data.
- Prepare a presentation on your university using MS-PowerPoint.
- Design a Magazine cover. Use the following:
 - (1) Select a theme for the page,
 - (2) Insert either a picture or clipart, and
 - (3) Use WordArt.
- Design a poster inviting all students of your university to the Computer Festival.
- Installation and demonstration of LaTeX.
- Prepare professional pdf documents using LaTeX.
- Prepare LaTex document containing mathematical equations.

SKILLS:

- Creating the documents using MS-Word and LaTex.
- > Analysing and visualizing data with excel.
- > Developing various power point presentations.

ACTIVITIES:

- Create a 5-page document. Use hyperlinks, insert bookmarks in the same document.
- Design a worksheet using the following functions—MODE, STDDEV, VARIANCE, MEDIAN, SIN, COS, TAN, COUNT, MAX, MIN, ABS, MOD, SUM, SUMIF, POWER.
- > Create bar graphs, pie charts and line charts in excel.
- Create a 5-slide presentation on any topic. Use Images, Graphs, Chart, Tables, Animation, Time, Bullets, Transition, Sound, Hyperlink, Background template, Header and Footer.
- Create a following numbered list using LaTex.

1. Introduction

This is a display of numbered list 1.Abstract. 2.Introduction. 3.Section 1. a) Section 1.1. b) Section 1.2. 4.Section 2.

COURSE OUTCOMES:

Upon completion of the course the student will be able to achieve the following outcomes:

CO No.	Course Outcomes	Blooms Level	Module No.	Mapping with POs
1	Ability to assemble and disassemble the computer system components and trouble shooting.	Apply	1	1
2	Installing Operating Systems and understanding the system booting process.	Understand	1	1
3	Ability to develop system maintenance using shell scripts.	Apply	1	1
4	Create word documents, presentations and spread sheets by applying various tools.	Create	2	2,5

TEXT BOOKS:

- 1. Fundamentals of Computers by Reema Thareja, Oxford University Press 2nd edition 2019, India
- 2. Stefan Kottwitz, "LaTeX Beginner's Guide: Create visually appealing texts, articles, and books for business and science using LaTeX", 2nd Edition, Kindle, 2021.

REFERENCE BOOKS:

- 1. Priti Sinha and Pradeep K. Sinha, "Computer Fundamentals: Concepts, Systems and Applications", 8th edition, BPB Publications, 2004.
- 2. John Walkenbach, Herb Tyson, Michael R.Groh and FaitheWempen, "Microsoft Office 2010 Bible", Wiley.

Image source: https://www.facebook.com/TheITWorkshopWA

22TP103–PROGRAMMING IN C

Hours per week:

L	Т	Р	С
2	0	4	4

PREREQUISITE KNOWLEDGE: Fundamentals of Problem Solving.

COURSE DESCRIPTION AND OBJECTIVES:

This course is aimed to impart knowledge on basic concepts of C programming language and problem solving through programming. It covers basic structure of C program, data types, operators, decision making statements, loops, functions, strings, pointers, and also file manipulations. At the end of this course, students will be able to design, implement, test and debug complex problems using features of C.

MODULE-1

8L+0T+16P=24 Hours

INTRODUCTION TO ALGORITHMS AND PROGRAMMING LANGUAGES

INTRODUCTION TO ALGORITHMS: Basics of algorithms; Flow charts; Generations of programming languages. Introduction to C: Structure of a C program - pre-processor statement, inline comments, variable declaration statements, executable statements; C Tokens - C character set, identifiers and keywords, type qualifiers, type modifiers, variables, constants, punctuations and operators.

DATA TYPES AND OPERATORS: Basic data types; Storage classes; Scope of a variable; Formatted I/O; Reading and writing characters; Operators - assignment, arithmetic, relational, logical, bitwise, ternary, address, indirection, sizeof, dot, arrow, parentheses operators; Expressions - operator precedence, associative rules.

Control Statements: Introduction to category of control statements; Conditional branching statements - if, if– else, nested-if, if – else ladder, switch case; Iterative statements - for, while, do - while, nested loops; Jump statements - break, jump, goto and continue.

UNIT-2

UNIT-1

8L+0T+16P=24 Hours

ARRAYS & STRINGS

Arrays: Introduction; Types of arrays; Single dimensional array - declaration, initialization, usage, reading, writing, accessing, memory representation, operations; Multidimensional arrays.

Strings: Character array, Reading string from the standard input device, Displaying strings on the standard output device, Importance of terminating a string, Standard string library functions.

PRACTICES:

Questions on Data Handling – Level 1:

- Write a program to accept a character as input from the user and print it.
- Write a program to accept a number as input from the user and print it.
- Write a program to accept a float value from the user and print it.
- Write a program to accept a message as input from the user and print it.
- Write a program to accept a message from the user as input and print it in 3 different lines.
- Write a program to accept 2 numbers from the user as input and print their sum.
- Write a program to accept 2 numbers from the user as input and print their product.
- Write a program to accept a number as input from the user which denotes the temperature in Celsius, convert it to Fahrenheit reading and print it.
- Write a program to accept a number as input from the user which denotes the radius and print the area of the circle.
- Write a program to accept a character as input from the user and print it's corresponding ASCII value.

Questions on Control Statements - Looping – Level 1:

- Write a C program to print all the characters from a to z once.
- Write a C program to print all the characters from Z to A once.
- Write a C program to print all the characters from A to Z 3 times.
- Write a C program to print the first N natural numbers, where N is given as input by the user.
- Write a C program to print the first N natural numbers and their sum, where N is given as input by the user.
- Write a C program to print all the odd numbers between 1 and N where N is given as input by the user.
- Write a C program to print all the even numbers between I and N where N is given as input by the user.
- Write a C program to print the squares of the first N natural numbers between 1 and N, where N is given as input by the user.
- Write a C program to print the cubes of the first N natural numbers between 1 and N, where N is given as input by the user.
- Write a C program to print the squares of every 5th number starting from 1 to N, where N is given as input by the user.

Questions on Control Statements – Decision Making – Level 1:

- Write a program to accept two numbers as input check if they are equal.
- Write a program to accept two characters as input and check if they are equal.
- Write a program to accept two numbers as input and print the greater of the 2 numbers.
- Write a program to accept two numbers as input and print the lesser of the 2 numbers.
- Write a program to accept 3 numbers as input and print the maximum of the 3.
- Write a program to accept 3 numbers as input and print the minimum of the 3.
- Write a program to accept a number as input and print EVEN if it is an even number and ODD if it is an odd number.

- Write a program to accept a number as input and check if it is divisible by 3. If it is divisible by 3 print YES else print NO.
- Write a program to accept a number as input and check if it is divisible by both 3 & 5. If it is divisible print YES else print NO.
- Write a program to accept a number as input and check if it is positive, negative or zero.

Questions on Patterns – Level 1:

• Write a program to accept a number N as input from the user and print the following pattern. Sample N = 5.

```
*****
*****
*****
****
```

- Write a program to accept a number N as input from the user and print the following pattern. Sample N = 5.

 - * * * * * *
- Write a program to accept a number N as input from the user and print the following pattern. Sample N = 5.
 - * ** *** ****
- Write a program to accept a number N as input from the user and print the following pattern. Sample N = 5.
 - * ** *** ****
- Write a program to accept a number N as input from the user and print the following pattern. Sample N = 5.
 - 1 12 123 1234 12345
- Write a program to accept a number N as input from the user and print the following pattern. Sample N = 5.

- 1 22 333 4444 55555
- Write a program to accept a number N as input from the user and print the following pattern. Sample N = 5.
 - 54321 4321 321 21
 - 1
- Write a program to accept a number N as input from the user and print the following pattern. Sample N = 5.
 - 12345 2345 345 45 5
- Write a program to accept a number N as input from the user and print the following pattern. Sample N = 5.
 - A AB ABC ABCD ABCDE
- Write a program to accept a number N as input from the user and print the following pattern. Sample N = 5.
 - A BC DEF GHIJ KLMNO

Questions on Number Crunching – Level 1:

- Write a program to accept a number as input and print the number of digits in the number.
- Write a program to accept a number as input print the sum of its digits.
- Write a program to accept a number as input, reverse the number and print it.
- Write a program to accept a number and digit as input and find the number of occurrences of the digit in the number.
- Write a program to accept a number as input and check if it is an Armstrong number.
- Write a program to accept a number as input and check if it is an Adam number.
- Write a program to accept a number as input and check if is a prime number.
- Write a program to accept 2 numbers as input and check if they are amicable or not.
- Write a program to accept a number as input and check if it is a power of 2.

• Write a program to accept 2 numbers as input and find their LCM.

Questions on Arrays – Level 1:

- Print the contents of an array from the left to the right.
- Print the contents of an array from the right to the left.
- Find the sum of the elements of an array.
- Find the maximum element in an unsorted array.
- Find the minimum element in an unsorted array.
- Find the average of the elements in an unsorted array.
- Count the number of 0s and 1s in an array having 0s and 1s in random order.
- Count the number of elements in an array whose elements are lesser than a key element in an unsorted array.
- Print all the elements in an array whose values are lesser than a key element in an unsorted array.
- Find the repeated elements in a sorted array.

Questions Number crunching – Level 2:

- Write a program to accept a number as input and print the product of its digits.
- Write a program to accept a number as input and check if it is a palindrome.
- Write a program to accept a number as input and print the frequency of occurrence of each digit.
- Write a program to accept a number as input and print its factors.
- Write a program to accept a number as input and print its prime factors.
- Write a program to accept a number as input and check if it is a perfect square of not.
- Write a program to accept 2 numbers as input and check if they are betrothed numbers or not.
- Write a program to accept 2 numbers as input and print their HCF.
- Write a program to accept a number as input and check if is a strong number.
- Write a program to generate prime numbers between two intervals given as input.

Questions on Arrays – Level 2:

- Find the sum of the maximum and minimum numbers of an unsorted array.
- Replace every element in an array with the sum of its every other element.
- Replace every element in an array with the sum of its right side elements.
- Replace every element in an array with the sum of its left side elements.
- Reverse the elements of an array (in place replacement).
- Reverse the first half of an array.
- Reverse the second half of an array.
- Write a program to find the second largest element in an unsorted array.
- Write a program to find the second smallest element in an unsorted array.
- Write a program to print the number of odd and even numbers in an unsorted array.

Questions on Strings – Level 1:

- Write a program to accept a string as input and print it.
- Write a program to accept a string as input and count the number of vowels in it.
- Write a program to accept a string as input and count the number of consonants in it.
- Write a program to accept a string as input and print its length.
- Write a program to accept a string as input and print the reversed string.
- Write a program to accept 2 strings as input and check if they are the same.
- Write a program to accept a string as input and copy the contents into a second string and print the second string.
- Write a program to accept 2 strings as input and concatenate them into a third string and print the third string.
- Write a program to accept a string as input and check if it is a palindrome.
- Write a program to accept two strings as input and check if the second string is a substring of the first.

Questions on Strings – Level 2:

- Implement the string length function.
- Implement the string copy function.
- Implement the string concatenate function.
- Implement the string compare function.
- Implement the vowel count function.
- Implement the consonant count function.
- Implement the count words function.
- Implement the string reverse function.
- Implement the strstr function.
- Complete the code snippet to implement the is Palindrome function that checks if a given string is a palindrome. You will need to use the 3 functions string Copy, str Reverse and string Compare functions provided to accomplish this.

MODULE-2

UNIT-1

8L+0T+16P=24 Hours

FUNCTIONS & POINTERS

User-defined functions: Function declaration - definition, header of a function, body of a function, function invocation; Call by value; Call by address; Passing arrays to functions; Command line arguments; Recursion; Library Functions.

Pointers: Declaration, Initialization, Multiple indirection, Pointer arithmetic, Relationship between arrays and pointers, Scaling up - array of arrays, array of pointers, pointer to a pointer and pointer to an array; Dynamic memory allocation functions.

UNIT-2

STRUCTURES, UNIONS & FILES

STRUCTURES: Defining a structure, Declaring structure variable, Operations on structures, Pointers to structure - declaring pointer to a structure, accessing structure members using pointer; Array of structures, Nested structures, Passing structures to functions - passing each member of a structure as a separate argument, passing structure variable by value, passing structure variable by reference/ address; Typedef and structures.

Unions: Defining a union - declaring union variable, operations on union; Pointers to union - declaring pointer to a union, accessing union members using pointer; Array of union, Nested union, Typedef and union, Enumerations, Bit-fields.

Files: Introduction to files, Streams, I/O using streams – opening a stream, closing stream; Character input, Character output, File position indicator, End of file and errors, Line input and line output, Formatted I/O, Block input and output, File type, Files and command line arguments.

PRACTICES:

Questions on Strings – Level 3:

- Write a program to swap two given strings and print the swapped strings.
- Write a program to swap two given words of the given sentence and print the altered string.
- Return the maximum occurring character in the string.
- Write a program to print the character in the string with the count where count is the occurrence of the character.
- Write a program to print the duplicate characters in the given string.
- Write a program to remove the duplicate characters in the given string.
- Write a program to remove the vowels from a given string.
- Write a program to rotate a given string N number of times.
- Write a program to check if 2 strings are rotations of each other.
- Write a program to remove the characters from the first string that are present in the second string.

Questions on 2D Arrays – Level 1:

- Print the contents of a 2D array row-wise.
- Print the contents of a 2D array column-wise.
- Print the contents of a 2D array in a zig-zag order.
- Print the contents of a 2D array diagonal-wise.
- Print the contents of a 2D array right-diagonal order.
- Print the contents of a 2D array left-diagonal order.
- Print the contents of a 2D array in the upper triangular order left top to right bottom.
- Print the contents of a 2D array in the lower triangular order.
- Find and print the maximum element along with its position in a matrix.
- Find and print the minimum element along with its position in a matrix.

Questions on 2D Arrays – Level 2:

- Find and print the maximum element of each row of a matrix.
- Find and print the minimum elements of each row of a matrix.
- Find and print the maximum element of each column of a matrix.
- Find and print the minimum element of each column of a matrix.
- Find the lowest value in the upper triangle area and the largest value in the lower triangular area of a matrix and print their product.
- Find the sum of the elements of each row and each column of a matrix and print the minimum row sum and maximum sum column.
- Write a program to find the row with the maximum number of 1's in a matrix consisting of only 0's and 1's.
- Write a program to print the quotient and remainder on dividing sum of left-top to right-bottom diagonal by sum of right-top to left-bottom diagonal.
- Write a program to print the absolute difference of the sum of major diagonal elements and the sum of minor diagonals of the given matrix.
- Write a program to search a given element in a row-wise and column-wise sorted 2D array.

Questions on 2D Arrays – Level 3:

- Write a program to find the Kth smallest element in the given matrix.
- Write a program to find the Kth largest element in the given matrix.
- Write a program to check whether the given two two-dimensional array of same dimensions are equal or not.
- Write a program to add the given two two-dimensional array of same dimensions.
- Write a program to subtract the given two two-dimensional array of same dimensions.
- Write a program to multiply the given two two-dimensional array of same dimensions.
- Write a program to sort each row of a matrix.
- Write a program to find the sum of the elements in 'Z' sequence of the given 2D array.
- Write a program to print the unique rows of the given two-dimensional array consisting of only 0's and 1's.
- Write a program to print the unique columns of the given two-dimensional array consisting of only 0's and 1's.

Questions on Files, Structures & Unions:

• Write a C program to create a struct, named Student, representing the student's details as follows: first_name, last_name, Age and standard.

Example Read student data john carmack 15 10 Display the data in the following format First Name: john Last Name: carmack Age: 15

Standard: 10

• Declare a structure POINT. Input the coordinates of point variable and write a C program to determine the quadrant in which it lies. The following table can be used to determine the quadrant.

Quadrant	Х	Y
1	Positive	Positive
2	Negative	Positive
3	Negative	Negative
4	Positive	Negative
		-

Example

Input the values for X and Y coordinate: 7 9

The coordinate point (7,9) lies in the First quadrant.

 Bob and Alice both are friends. Bob asked Alice how to store the information of the books using Structures. Then Alice written a c program to store the information of books using book structure by taking different attributes like book_name, author, book_id, price. Write a C program to read and display the attributes of the books using structures.

Sample Input:

Enter number of books: 1 Enter the book name: c Programming Enter the author name: balaguruswamy Enter the book ID: 23413 Enter the book price: 500 **Sample Output:**

The details of the book are:

The book name is: c Programming

The author name is: balaguruswamy

The book ID is: 23413

The book price is: 500.00

• Ramesh wants to do addition on complex numbers. He did it with regular practice but Charan asked him to do with the help of structures by following below Criteria.

Write a C program that defines a structure named 'Complex' consisting of two floating point members called "real and imaginary". Let c1 and c2 are two Complex variables; compute the sum of two variables.

Example: c1=2 8 c2=6 4 Sum= 8.000000+12.000000i

Customer Payment Details is a structure with members as customers_name, address,

account_number, payment_status(paid(1)/ not_paid(0)), due_date, and amount. In this example, payment_date is another structure with month, day and year as integer members. So, every customer record can be considered as an array of structures.

Write a C program that displays the amount to be paid by each customer along with their names. If payment_status is 1, display NIL for such customers.

Input Format:

First line of input contains 'n' number of customers, followed by 8 lines of input for each customer. Each line represents (customers_name, address, account_number, amount payment_status(paid(1)/ not_paid(0)), and due_date).

Output Format: First line of output is Amount to be paid by each customer as on date: followed by n lines of output. Each line contains name of the customer followed by tab space, and amount to be paid.

Hint: Use nested structure to represent date.

Write a 'C' program to accept customer details such as: Account_no, Name, Balance using structure. Assume 3 customers in the bank. Write a function to print the account no. and name of each customer whose balance < 100 Rs.

- Write a C program to accept details of 'n' employee(eno, ename, salary) and display the details of employee having highest salary. Use array of structure.
- Write a C program to print the bill details of 'N' number of customers with the following data: meter number, customer name, no of units consumed, bill date, last date to deposit and city. The bill is to be calculated according to the following conditions:

No. of units Charges For first 100 units Rs.0.75 per unit For the next 200 units Rs.1.80 per unit For the next 200 units Rs.2.75 per unit Sample Input Enter no. of customers 1 Enter Meter Number AP01213 Enter Customer Name: Karthik Enter No. of units consumed: 200 Enter Bill date:22/01/2021 Enter Last date: 12/2/2021 Enter City: Guntur Sample Output Meter Number AP01213 Customer Name: Karthik No. of units consumed: 200 Bill date:22/01/2021 Last date: 12/2/2021 City: Guntur Total Amount: 255.000000

• Write a C program that creates a student file containing {Roll No, Student Name, Address, Stream}, where the data will be inserted and display the list of students who are in CSE (Stream=CSE).

Input: A file name Output: The attributes such as Roll_No, Student_Name, Stream, Address.

Sample Input201fa4200 RajaCSEGuntur201fa4201BalaITSample OutputTenali201fa4200RajaCSEGunturGuntur

• Write a C program that reads content from an existing text file and write the same in a new file by changing all lowercase alphabetic character to upper case. (Existing file may contain digit and special characters).

Example:

Input: Enter the file name.

Output: New file with updated content.

• Write a C program to count the occurrences of the given string in a file.

Example:

Input: Enter the File name to read the string to be counted.

Output: Display the count of occurrences of the string.

• Write a C Program to transfer the data from one location to another location without changing the order of the content.

Example:

Read the file name from the user. If the source file exists, Transfer the data and display the message as "Data is transferred successfully" otherwise display the message "No such file is existing in the directory."

• Write a C program that reads numbers and write them into a text-file. Also find odd and even numbers in that file and store it in 2 separate files named odd.txt and even.txt. All the values should be in ascending order.

Input: Enter the values.

Output: Creates a separate file for Even and Odd numbers.

Sample Input:

4 43 2 53 45

Sample Output:

Even.txt: 2 4

Odd.txt: 43 45 53

• Write a C program to replace the content in the given text file.

Input: Enter the file name, line number to be replaced and the new content

Output: New file with replaced lines.

Example:

Sample Input: Enter the file name: abc.txt

Enter the line no to replace: 3

Enter the content: Files stores data presently.

Sample Output:

Line no 3 is replaced with the given content.

The content of the file abc.txt contains:

test line 1

test line 2

Files stores data presently

test line 4

SKILLS:

- > Analysis of the problem to be solved.
- > Select static or dynamic data structures for a given problem and manipulation of data items.
- > Application of various file operations effectively in solving real world problems.
- Develop C programs that are understandable, debuggable, maintainable and more likely to work correctly in the first attempt.

COURSE OUTCOMES:

Upon completion of the course, the student will be able to achieve the following outcomes:

No.	Course Outcome	Blooms Level	Module No.	Mapping with POs	
-----	----------------	-----------------	---------------	---------------------	--

1	Identify suitable data type for operands and design of expressions having right precedence.	Apply	1,2	1
2	Apply decision making and iterative features of C Programming language effectively.	Apply	1,2	1
3	Select problem specific data structures and suitable accessing methods.	Analyze	1,2	1,2
4	Design and develop non- recursive and recursive functions and their usage to build large modular programs and also able to design string manipulation functions.	Create	1,2	3
5	Develop C programs that are understandable, debuggable, maintainable and more likely to work correctly in the first attempt.	Evaluate	1,2	3,4

TEXT BOOKS:

- 1. Behrouz A. Forouzan, Richard F.Gilberg, "Programming for Problem Solving", 1st edition, Cengage publications, 2019.
- 2. Ajay Mittal, "Programming in C A Practical Approach", 1st edition, Pearson Education, India, 2010.

REFERENCE BOOKS:

- 1. Reema Thareja, "Computer Fundamentals and Programming in C", 1st edition, Oxford University Press, India, 2013.
- 2. Herbert Schildt, "C: The Complete Reference", 4th edition, Tata McGraw-Hill, 2017.
- 3. Byron S Gottfried, "Programming with C", 4th edition, Tata McGraw-Hill, 2018.

Techgig.com

22EN102–ENGLISH PROFICIENCY AND COMMUNICATION SKILLS

Hours per week:

L	Т	Р	С
0	0	2	1

PREREQUISITE KNOWLEDGE: Basics of grammar, Read and understand for global context, Cultural sensitivity and Basic writing skills.

COURSE DESCRIPTION AND OBJECTIVES:

English Proficiency and Communication Skillsseeks to develop the students' abilities in grammar, speaking, reading, writing and overall comprehension skills. The course will provide students an exposure on a wide range of language use in everyday situations. It will make the students to equip with functional English and make them use it confidently in their professional and social contexts. Finally, students will strengthen their reading, writing, listening and speaking skills in English

MODULE-1

UNIT-1

0L+0T+8P=8 Hours

MY LIFE AND HOME - MAKING CHOICES - HAVING FUN

Reading: Understanding main message, factual information global meaning, specific information and paraphrasing.

Writing: Developing hints based mail, Writing short messages/paragraphs.

Listening: Understanding short monologues or dialogues and choose the correct visual.

Speaking: Express simple opinions /cultural matters in a limited way.

Vocabulary: Discerning use of right word suiting the context, B1 Preliminary word list.

Grammar: Frequency Adverbs, State Verbs, AFV and Prepositions.

UNIT-2

0L+0T+8P=8 Hours

ON HOLIDAY - DIFFERENT FEELINGS – THAT'S ENTERTAINMENT!

Reading: Longer text for detailed comprehension, gist and inference.

Writing: Developing notes and responding to penfriends or 'e-pals'.

Listening: Understand straightforward instructions or public announcements.

Speaking: Describing people, things and places in a photograph.

Vocabulary/Grammar: Comparatives and Superlatives, Gradable and non-gradable adjectives, Cloze tests.

PRACTICES:

- Developing hints based mail.
- Writing short message.
- Writing paragraphs.
- Expressing opinions and cultural matters.
- Understanding short monologues.

- Understanding straightforward instructions and public announcements.
- Describing people, things and places in a photograph.

MODULE-2

UNIT-1

0L+0T+8P=8 Hours

GETTING AROUND – INFLUENCES - STAY FIT AND HEALTHY

Reading: Reading for understanding coherence of the text and drawing inferences.

Writing: Reading an announcement from a magazine or website for preparing an article.

Listening: Discussion activities and listening to understand the gist of each short dialogue.

Speaking: Snap Talks, Make and respond to suggestions, discuss alternatives and negotiate agreement.

Vocabulary / Grammar: Punctuation, Prepositions, Phrasal Verbs, B1 Preliminary word list.

UNIT-2

0L+0T+8P=8 Hours

LOOKS AMAZING! - THE NATURAL WORLD - EXPRESS YOURSELF!

Reading: Content, Communicative Achievement, Organisation and Language.

Writing: Developing a story with clear links to the given opening sentence.

Listening: An interview for a detailed understanding of meaning and to identify attitudes and opinions.

Speaking: Discuss likes, dislikes, experiences, opinions, habits, etc.

Vocabulary/Grammar: Modals, Conditionals, Verb forms (Time and Tense).

PRACTICES:

- Listening to understand the gist of each short dialogue.
- Listening to an interview for a detailed understanding of meaning and to identify attitudes and opinions.
- Preparing an article.
- Discuss for alternatives and negotiate agreement.
- Discussion on likes, dislikes, experiences, opinions, habits, etc.

SKILLS:

- > Use of appropriate grammar and vocabulary with syntactic patterns in short texts.
- Read and extract the main message, global meaning, specific information, detailed comprehension, understanding of attitude, opinion and writer purpose and inference.
- Listen to understand key information, specific information, gist and detailed meaning and to interpret meaning.
- > Understand questions and make appropriate responses and talk freely on everyday topics.

COURSE OUTCOMES:

Upon successful completion of this course, students will have the ability to:

CO	Course Outcomes	Blooms	Module	Mapping with
No.		Level	No.	POs

1	Apply to read and grasp content on a range of topics/texts related to their everyday life like notifications, advertisements, travel brochures, news reports, articles.	Apply	1	7, 8, 9, 10, 12
2	Apply suitable strategies to achieve comprehension, like listening for main points and checking comprehension using contextual clues etc.	Apply	1	7, 8, 9, 10, 12
3	Use functional English to communicate and interact effectively in everyday situations.	Apply	1, 2	7, 8, 9, 10, 12
4	Demonstrate vocabulary beyond that of the familiar subjects.	Analyz e	1, 2	7, 8, 9, 10, 12
5	Show sufficient control of English grammar and sentence variety to coherently organise information at sentence and discourse levels.	Evaluat e	2	7, 8, 9, 10, 12

TEXT BOOK:

1. Emma Heyderman and Peter May, "Complete Preliminary", Student's Book with Answers, 2nd edition, Cambridge University Press, 2019.

REFERENCE BOOKS:

- 1. Annette Capel and Rosemary Nixon, "Introduction to PET", Oxford University Press, 2009.
- 2. Adrian Doff and Craig Thaine, "Empower Pre intermediate", Cambridge University Press, 2015.
- 3. Louise Hashemi and Barbara Thomas, "Objective PET", Cambridge University Press, 2010.

Image source: https://www.scribd.com/document/502301821/Cambridge-Complete-B1-Preliminary-for-Schools-Workbook-2020-Edition

22TP101–CONSTITUTION OF INDIA

Hours per week:

L	Т	Р	С
0	2	0	1

PREREQUISITE KNOWLEDGE: High School-level Civics and Social Studies.

COURSE DESCRIPTION AND OBJECTIVES:

To provide students with a basic understanding of Indian Polity and Constitution and make students understand the functioning of government at the center and state level besides local self-government. This course also equips students with knowledge pertaining to fundamental rights and fundamental duties of a citizen in a democracy such as India.

MODULE-1

HISTORICAL BACKGROUND TO THE INDIAN CONSTITUTION

Meaning of the constitution law and constitutionalism; Historical perspective of the Constitution of India; Salient features and characteristics of the Constitution of India.

UNIT-2

UNIT-1

0L+8T+0P=8 Hours

0L+8T+0P=8 Hours

FUNDAMENTAL RIGHTS, DUTIES, DIRECTIVE PRINCIPLES, AND AMENDMENT

Scheme of the fundamental rights - scheme of the Fundamental Right to Equality; scheme of the Fundamental Right to certain Freedom under Article 19; scope of the Right to Life and Personal Liberty under Article 21; Scheme of the Fundamental Duties and its legal status; Directive Principles of State Policy – its importance and implementation; Amendment of the Constitution - Powers and Procedure.

PRACTICES:

- Enactment of Constituent Assembly debates to further understand the rationale for the provisions of the constitution.
- Fundamental Rights in our popular culture discussion in the movie Jai Bhim.

MODULE-2

0L+8T+0P=8 H Hours

Federal structure and distribution of legislative and financial powers between the Union and the States; Parliamentary Form of Government in India – The constitution powers and status of the President of India; Emergency Provisions: National Emergency, President Rule, Financial Emergency.

UNIT-2

0L+8T+0P=8 Hours

LOCAL SELF GOVERNMENT

Local Self Government – Constitutional Scheme in India – 73rd and 74th Amendments.

PRACTICES:

- Debate on federalism in India.
- Collect news published in the local papers about panchayats in the nearby areas.

SKILLS:

- ▶ Knowledge the basics of the Indian constitution.
- > Know the fundamental rights, fundamental duties, and Directive Principles of State Policy.
- > Fair knowledge about the functioning of various institutions in a democracy.

COURSE OUTCOMES:

Upon successful completion of the course, students will have the ability to:

CO No.	CO's	Blooms Level	Module No.	Mapping with PO's
1	Analyse major articles and provisions of the Indian constitution.	Analyze	1	6
2	Appreciation for the constitution and safeguarding individual rights.	Apply	1	6
3	Evaluating functions of various organs of the State in a democracy.	Evaluate	2	6

TEXTBOOK:

1. PM Bhakshi, "Constitution of India", 15th edition, Universal Law Publishing, 2018.

REFERENCE BOOKS:

- 1. B. R. Ambedkar, "The Constitution of India" Educreation Publishing, India, 2020.
- 2. Subhash Kashyap, "Our Constitution" 2nd edition, National Book Trust, India, 2011.
- 3. Arun K. Thiruvengadam, "The Constitution of India: A Contextual Analysis", Hart Publishing India, 2017.

Image: https://commons.wikimedia.org/wiki/File:Constitution_india.jpg

I Year II Semester							
Sl. No.	Course Code	Course Title	L	Т	Р	С	
1	22MT106	Algebra	3	2	0	4	
2	22CS107	Discrete Mathematical Structures	2	2	0	3	
3	22ME101	Engineering Graphics	2	0	2	3	
4	22TP104	Basic Coding Competency	0	1	3	2	
5	22EN104	Technical English Communication	2	0	2	3	
6	22CS104	Digital Logic Design	2	0	2	3	
7	22SA103	Physical Fitness, Sports and Games – II	0	0	3	1	
8	22SA102	Orientation Session	0	0	6	3	
		Total	11	5	18	22	
		Total	34			22	
22MT106-ALGEBRA

Hours per week :

L	Т	Р	С
3	2	0	4

PREREQUISITE KNOWLEDGE: Basics of sets, Relations and Functions.

COURSE DESCRIPTION AND OBJECTIVES:

This course emphasizes on motivation and justification for the algorithmic usage of group theory in different domains. The objective of this course is to introduce the concepts of Groups, Rings, Integral domains and Fields. Develop the ability to form and evaluate group theory and its actions. Understand the fundamental concepts of algebra. The fundamental notions viz. linear dependence, basis and dimension and linear transformations on these spaces have to be studied thoroughly.

MODULE-1

UNIT-1

GROUP THEORY

Algebraic structures with binary operations, Semigroup, Monoid, Group, Subgroup, Cosets, Lagrange's theorem, Normal subgroup, Quotient group.

UNIT-2

12L+8T+0P=20 Hours

12L+8T+0P=20 Hours

APPLICATIONS OF GROUP THEORY

Introduction to Rings, Integral Domains, Fields with examples. Properties of groups, order of an element in a group, homomorphism, isomorphism.

PRACTICES:

- List all the properties for group
- Give examples for groups and other binary structures.
- In a group of even order there is an element $a \neq e$ such that $a^2 = e$.
- For any two subgroups discuss the possibility of their intersection and union being a subgroup.
- Any two groups of order 6 are isomorphic, Verify.

MODULE-2

12L+8T+0P=20 Hours

VECTOR SPACES

Vector space, Subspace, linear span, linearly independent and dependent vectors, Bases, Dimension, Linear transformations, Inner product spaces.

UNIT-2

UNIT-1

APPLICATIONS OF VECTOR SPACES

12L+8T+0P=20 Hours

Matrix of Linear Transformation, Change of Coordinates, Rank and Nullity, Orthogonality, Cauchy's Schwartz Inequality, Gram Schmidt Orthogonalization.

PRACTICES:

- Examine whether or not a given algebraic structure is a vectorspace.
- Verify whether a given set forms a basis or not of R³.
- Testing orthogonality of given set of vectors.
- Finding Rank and Nullity of linear transformation.

SKILLS:

- > Identifying identity elements of an Algebraic structure and inverses of elements.
- > Evaluate the rank and nullity of a Linear Transformation.

COURSE OUTCOMES:

Upon successful completion of this course, students will have the ability to:

CO No.	Course Outcomes	Blooms Level	Module No.	Mapping with POs
1	Apply the concepts of cosets to study properties of subgroups.	Apply	1	1, 2, 9, 10, 12
2	Outline the various properties and apply group actions critically.	Apply	1	1, 2, 9, 10, 12
3	Understand and apply the concepts of vector spaces, subspaces, bases, dimension and their properties.	Apply	2	1, 2, 9, 10, 12
4	Analyse inner product spaces for their orthogonality.	Analyse	2	1, 2, 9, 10, 12

TEXT BOOKS:

- 1. Tremblay, J.P. and Manohar. R, "Discrete Mathematical Structures with Applications to Computer Science", 30th Reprint, Tata McGraw Hill Pub. Co. Ltd, New Delhi, 2017.
- 2. Rosen, K.H., "Discrete Mathematics and its Applications", 7th Edition, Tata McGraw Hill Pub. Co. Ltd., New Delhi, 2018.

REFERENCE BOOKS:

- 1. R.P. Grimaldi, "Discrete and Combinatorial Mathematics: An Applied Introduction", 4th Edition, Pearson Education Asia, Delhi, 2017.
- S. Lipschutz and Mark Lipson., "Discrete Mathematics", Schaum's Outlines, Tata McGraw Hill Pub. Co. Ltd., New Delhi, 2021.
- 3. T. Koshy, "Discrete Mathematics with Applications", Elsevier Publications, 2015.
- 4. S B Singh. "Discrete Structures", Khanna Book Publishers Co-Pvt. Ltd. 2019. Image Source: <u>https://pll.harvard.edu/course/college-algebra</u>.

22CS107–DISCRETE MATHEMATICAL STRUCTURES

Hours Per Week :

L	Т	Р	С
2	2	0	3

PREREQUISITE KNOWLEDGE: Basic of set theory, Algebra.

COURSE DESCRIPTION AND OBJECTIVES:

The course objective is to provide students with an overview of discrete mathematics. Students will learn about of group and expected to demonstrate analytical and combinatorial methods such as propositional logic, Mathematical Induction, Boolean functions, combinatorial, recurrence relation, generating function and graph theory.

MODULE-1

UNIT-1

BOOLEAN ALGEBRA AND LOGIC

Group: Group, Subgroup, Lagrange's theorem, Introduction to rings and fields.

Boolean algebra: Boolean algebra, Truth table, Basic logic gates, Postulates of Boolean algebra, Principle of duality, Propositions, Connectives, Equivalence and Normal form.

MODULE-2

UNIT-1

COMBINATORICS AND GRAPHS

Combinatorics: The basics of counting, Permutations and combinations, Discrete Numeric Functions. Recurrence relations and Generating functions.

Graph theory: Graph terminology, Special types of graphs, Connected graph, Weighed graph, Graph Isomorphism, Euler and Hamiltonian paths and circuits, Planar graphs, Bipartite graph, Tree.

UNIT-2

APPLICATIONS OF COMBINATORICS AND GRAPHS

Graph Coloring, Chromatic number, Matrix representation of graph, DFS, BFS algorithms, Minimum spanning tree.

8L+8T+0P=16 Hours

8L+8T+0P=16 Hours

8L+8T+0P=16 Hours

PRACTICES:

- t sequence by Generating function.
- by recurrence relation.
- degree of digraph and undirected graph.
- graph, Euler circuit, Hamiltonian circuit.
- e matrix representation of graph.
- e the regions of planer connected graph.
- w Kn, Km,n.
- e the chromatic number of graphs.
- weight of minimum spanning tree.
- number of arrangements that are possible.

COURSE OUTCOMES:

Upon successful completion of this course, students will have the ability to:

CO No.	Course Outcomes	Blooms Level	Modu leNo.	Mapping with POs
1	Apply the concepts of mathematical logic and Boolean algebra.	Apply	1	1, 2, 9, 10, 12
2	Apply Karnaugh map to minimize.	Apply	1	1, 2, 9, 10, 12
3	Solve generating function by recurrence relations.	Apply	2	1, 2, 9, 10, 12
4	Model and solve real world problems using graphs and trees.	Apply	2	1, 2, 9, 10, 12

TEXT BOOKS:

- 1. Tremblay, J.P. and Manohar. R, "Discrete Mathematical Structures with Applications to ComputerScience", 30th Reprint, Tata McGraw Hill Pub. Co. Ltd, New Delhi, 2017.
- 2. Rosen, K.H., "Discrete Mathematics and its Applications", 7th Edition, Tata McGraw Hill Pub.Co. Ltd., New Delhi, 2018.

REFERENCE BOOKS:

- 1. R.P. Grimaldi, "Discrete and Combinatorial Mathematics: An Applied Introduction", 4th Edition, Pearson Education Asia, Delhi, 2017.
- 2. S. Lipschutz and Mark Lipson., "Discrete Mathematics", Schaum's Outlines, Tata McGraw Hill Pub. Co. Ltd., New Delhi, 2021.
- 3. T. Koshy, "Discrete Mathematics with Applications", Elsevier Publications, 2015.

22ME101–ENGINEERING GRAPHICS

Hours per week:

L	Т	Р	С
2	0	2	3

PREREQUISITE KNOWLEDGE: Basics of Geometry

COURSE DESCRIPTION AND OBJECTIVES:

Engineering graphics is the language of engineers and is the most effective way of communicating and sharing technical ideas in the form of pictures/drawings. The objective of this course is to familiarize the students with the conventional concepts of engineering drawing and computer aided drawing.

MODULE-1

UNIT-1

6L+0T+6P=12 Hours

Engineering Curves: Types of lines; Lettering, Dimensioning, Geometric constructions - lines, polygons (Angle, ARC, General and Inscribe in circle method), Conical curves (General method), Ellipse by Oblong method.

UNIT-2

10L+0T+10P=20 Hours

Orthographic Projections of Points, Lines & Planes: Principles of projection; Projections of points; Projection of straight lines - Inclined to one plane, inclined to both planes; Projection of planes - Inclined to one plane.

PRACTICES:

- Construction of polygons using different methods (i.e. ARC, Angle, General).
- Inscribe a regular hexagon & pentagon in a circle of the given diameter.
- Tracing of conical curves (Ellipse, Parabola, Hyperbola) by using General Method.
- Draw the projections of the points situated in all the 4 quadrants.
- Draw the projections of a line when it is inclined to one plane (HP or VP).
- Draw the projections of a line when it is inclined to both the planes (HP &VP).
- Draw the projections of a plane when it is inclined to one plane (HP or VP).

MODULE-2

6L+0T+6P=12 Hours

Projections of Solids: Projection of solids axis inclined to one reference plane - Prisms, pyramids, Cylinder and cone.

Development of Surfaces: Development of lateral surfaces of simple solids - Prisms, Pyramids, Cylinder and cone.

UNIT-2

10L+0T+10P=20 Hours

Orthographic Views: Conversion of pictorial views into orthographic views.

Drafting Using Computer Package: Introduction to 2D modelling software - AutoCAD; Conversion of Isometric view into Orthographic views of simple castings; Conversion of Orthographic views into Isometric view of simple solids - Prisms, Pyramids, Cylinders and cones.

PRACTICES:

- Draw the projections of Prisms, when they are inclined to one reference plane (HP or VP).
- Draw the projections of Pyramids, when they are inclined to one reference plane (HP or VP).
- Draw the projections of cylinder & cone, when they are inclined to one reference plane (HP or VP).
- Draw the complete surface development of prisms & pyramids with the given dimensions.
- Draw the complete surface development of cylinder & cone with the given dimensions.
- Draw the orthographic view's (i. e. front view, top view, and side view) of the given pictorial view of the sketches by using AutoCAD.
- Draw the Isometric view of simple solids (Prisms & Pyramids) by using AutoCAD.
- Draw the Isometric view of simple solids (Cylinder & Cone) by using AutoCAD.

SKILLS:

- > Convert isometric views of objects into orthographic views and vice versa.
- Visualize the shape of the 3D components.
- Create pictorial views by using AutoCAD.
- Know projections by visualization.

COURSE OUTCOMES:

Upon successful completion of this course, students will have the ability to:

CO No.	Course Outcomes	Blooms Level	Module No.	Mapping with POs
1	Communicate the technical ideas in the form of drawings.	Apply	1	1,2,3,5
2	Apply the drawing skills in representing various geometrical features.	Apply	1	1,2,3,5
3	Develop orthographic projections and isometric views of various objects.	Apply	1	1,2,3,5

4	Estimate the lateral surface area of regular geometrical solids.	Analyze	2	1,2,3,5
5	Sketch simple objects and their pictorial views using AutoCAD.	Analyze	2	1,2,3,5

TEXT BOOKS:

- 1. J Hole, "Engineering Drawing", Tata McGraw-Hill, 2nd Edition, 2019.
- 2. N D Bhatt, "Engineering Drawing", Charotar Publication, 53rd Edition, 2014.

REFERENCE BOOKS:

- Basant Agrawal and C.M. Agrawal "Engineering Drawing", Tata Mc Graw-Hill, 2nd Edition 2018.
- 2. K L Narayana, "Engineering drawing", SciTech Publications, 3rd Edition, 2011.
- 3. Colin H. Simmons, Dennis E. Maguire, Manual of Engineering Drawing, 2nd Edition, 2003.

Image source: https://depositphotos.com/5087383/stock-photo-the-engineering-drawing.html

Image file name: Engineering Graphics

22TP104–BASIC CODING COMPETENCY

Hours per week:

L	Т	Р	С
0	1	3	2

0L+4T+12P=16 Hours

PREREQUISITE KNOWLEDGE: Programming in C.

COURSE DESCRIPTION AND OBJECTIVES:

This course is aimed to impart knowledge on advanced concepts of C programming language and problem solving. At the end of this course, students will be able to design, implement, test and debug complex problems using features of C.

MODULE-1

UNIT-1

NUMBER CRUNCHING

PRACTICES:

Problems On Number Crunching

- Write a program to check if a given number is perfect or not.
- Write a program to check if a given number is deficient or not.
- Write a program to check if 2 given numbers are amicable or not.
- Write a program to check if 2 given numbers are betrothed or not.
- Write a program to check whether a given number is an Armstrong number or not.
- Write a program to print the series of prime numbers in the given range.
- Write a program to print all the perfect numbers in a given range.
- Write a program to generate all deficient numbers in a given range.
- Write a program to generate all the amicable numbers in a given range.
- Write a program to generate all the betrothed numbers in a given range.
- Write a program to find the largest prime factor of a given number.
- Write a program to check whether the given number is a palindrome or not.
- Write a program to calculate sum of the individual digits for the given number.

- Write a program to find the first number that has more than 'n' factors, excluding 1 and that number.
- Write a program to accept a number as input and print its factorial.
- Write a program to accept a number n, print first N Fibonacci numbers.
- Write a program to check if an input number is Armstrong number or not.
- Write a program that takes input a,b. Print a power b.
- Write a program that takes input a number n, check if it a perfect square or not.
- Print array in spiral format.
- Print sum of each row in a matrix.
- Print sum of each column in matrix.
- Print left->right and right->left diagonals in a matrix.
- Initially you are at (0,0) find the shortest path count to reach the (n, n) block in matrix.
- Remove all the elements present in row and column of unsafe elements. An element is called unsafe if it is equal to smallest or largest value. Count number of remaining elements.
- Write a program to check if the string contains all the letters of alphabet.
- Check if a string is matching password requirements.
- Check if String A contains String B (String searching).
- Check if a number is harshad number or not.
- Write a program to get 3 numbers as input. The first is the number num1 and second is the digit that needs to be replaced. The third is the digit that is to replace the 2nd digit. Print the number after performing this operation.
- Write a program to accept a number and swap its alternate digits. Print the number generated.
- Write a program to accept a number and choice as input. If the choice is 0 rearrange the number such that the odd digits are ordered first followed by the even digits. If the choice is 1 rearrange the number such that the even digits are ordered first followed by the odd digits. Print the rearranged number. The order of occurrence of the digits is to be preserved.
- Write a program to determine that whether the given quadrilateral is cyclic or not. You are given the sizes of angles of a simple quadrilateral (in degrees) A, B, C and D, in some order along its perimeter.

Note: A quadrilateral is cyclic if and only if the sum of opposite angles is 180°.

- Chef is a very lazy person. Whatever work is supposed to be finished in x units of time, he finishes
 it in m*x units of time. But there is always a limit to laziness, so he delays the work by at max d
 units of time. Given x,m,d, find the maximum time taken by Chef to complete the work.
- Suppose Chef is stuck on an island and currently he has x units of food supply and y units of water supply in total that he could collect from the island. He needs xr units of food supply and yr units of water supply per day at the minimal to have sufficient energy to build a boat from the woods and also to live for another day. Assuming it takes exactly D days to build the boat and reach the shore, tell whether Chef has the sufficient amount of supplies to be able to reach the shore by building the boat? Read five integers x,y,xr,yr,D from the user and display "YES" if Chef can reach the shore by building the boat and "NO" if not (without quotes).
- There are 3 problems in a contest namely A,B,C respectively. Alice bets Bob that problem C is the hardest while Bob says that problem B will be the hardest.

You are given three integers SA,SB,SC which denotes the number of successful submissions of the problems A,B,C respectively. It is guaranteed that each problem has a different number of submissions. Determine who wins the bet.

1) If Alice wins the bet (i.e. problem C is the hardest), then output Alice.

2) If Bob wins the bet (i.e. problem B is the hardest), then output Bob.

3) If no one wins the bet (i.e. problem A is the hardest), then output Draw.

Note: The hardest problem is the problem with the least number of successful submissions.

Input Format

- The first line of input contains a single integer T denoting the number of test cases. The description of T test cases follows.
- The first and only line of each test case contains three space-separated integers SA,SB,SC, denoting the number of successful submissions of problems A,B,C respectively.

Output Format

For each test case, output the winner of the bet or print Draw in case no one wins the bet. **Sample Input 1**

In a season, each player has three statistics: runs, wickets, and catches. Given the season stats of two players A and B, denoted by R, W, and C respectively, the person who is better than the other in the most statistics is regarded as the better overall player. Tell who is better amongst A and B. It is known that in each statistic, the players have different values.

Input

The first line contains an integer T, the number of test cases. Then the test cases follow.

Each test case contains two lines of input.

The first line contains three integers R1, W1, C1, the stats for player A.

The second line contains three integers R2, W2, C2, the stats for player B.

Output

For each test case, output in a single line "A" (without quotes) if player A is better than player B and "B" (without quotes) otherwise.

• Write a program to find the direction.

Chef is currently facing the north direction. Each second he rotates exactly 90 degrees in clockwise direction. Find the direction in which Chef is facing after exactly X seconds. Note: There are only 4 directions: North, East, South, West (in clockwise order). Initially chef is at 0th second i.e., facing North direction. Input Format

- First line will contain T, number of testcases. Then the testcases follow.
- Each testcase contains of a single integer X. Output Format

For each testcase, output the direction in which Chef is facing after exactly X seconds. Sample Input 1

3 1 3 6 Sample Output 1 East West

South

Chef is playing in a T20 cricket match. In a match, Team A plays for 20 overs. In a single over, the team gets to play 6 times, and in each of these 6 tries, they can score a maximum of 6 runs. After Team A's 20 overs are finished, Team B similarly plays for 20 overs and tries to get a higher total score than the first team. The team with the higher total score at the end wins the match.

Chef is in Team B. Team A has already played their 20 overs, and have gotten a score of R. Chef's Team B has started playing, and have already scored C runs in the first O overs. In the remaining 20–O overs, find whether it is possible for Chef's Team B to get a score high enough to win the game. That is, can their final score be strictly larger than R?

Input: There is a single line of input, with three integers, R, O, C.

Output: Output in a single line, the answer, which should be "YES" if it's possible for Chef's Team B to win the match and "NO" if not.

• Make Array Zeros using pointers

You are given an array A of length N (size should be created using Dynamic memory allocation) and can perform the following operation on the array:

Select a subarray from array A having the same value of elements and decrease the value of all the elements in that subarray by any positive integer x.

Find the least possible number of operations required to make all the elements of array A equal to zero.

The first line contains an integer N denoting the number of elements in the array.

The next line contains space-separated integers denoting the elements of array A.

Print the least possible number of operations required to make all the elements of array A equal to zero.

Sample Test case

UNIT-2 PATTERNS PRACTICES:

0L+4T+12P=16 Hours

Problems on Number Patterns

- Write a program to generate Floyd triangle. Sample input N= 4.
 - 1 2 3 4 5 6 7 8 9 10 Write a program to generate the following pattern. Sample input N=5. 13579 3579 579 79 9
- Write a program to generate the following pattern. Sample input N=4.
 - 1111111 222222 33333 4444 333 22 1
- Write a program to generate the following pattern. Sample input N=5.
 - 5432*
 - 543*1
 - 54*21
 - 5*321
 - *4321
- Write a program to generate the following pattern. Sample input N=5.
 - 12 21
 - 123 321
 - 1234 4321
 - 123454321
- Write a program to generate the following pattern. Sample input N=5.

1 2*2 3*3*3 4*4*4*4 4*4*4*4 3*3*3 2*2 1

• Write a program to generate the following pattern. Sample input N=4.

- Write a program to generate the following pattern. Sample input N=5.
 - * * * * * * * *
- Write a program to print Pascal triangle for the given number of rows. Sample input N=5.

- Write a program to generate the following pattern. Sample input N=4.
 - 1234
 - 2341
 - 3421
 - 4321
- Print Hollow Diamond pattern.
- Print pascals triangle.

- Print Floyds triangle.
- Print Butterfly Pattern.
- Print palindromic pattern.
- Print full inverted number triangle.
- Check if a number is prime or not (Efficient Approach).
- Find sum of all the digits of the number.
- Print transpose of given matrix.
- Rotate a two dimensional matrix by 90, 180, 270 degrees.

MODULE-2

UNIT-1

0L+4T+12P=16 Hours

ARRAYS

PRACTICES:

Problems On Arrays

- Given an unsorted array of size N, and the array elements are in the range of 1 to N. There are no duplicates, and the array is not sorted. One of the integers is missing. Write a program to find the missing number.
- Given an array consisting of only 0s and 1s in random order rearrange the array such that all the 0s are to the left of the array and 1s to the right.
- Give an array consisting of odd and even numbers in random order, rearrange the array such that all the odd numbers are to the left of the array and even numbers are to the right of the array.
- Write a program to find all the unique elements in an array.
- Write a program to merge two arrays of the same size sorted in descending order.
- Write a program to count the frequency of each element in an array of integers.
- Write a program to find the second largest element in an array.
- Write a program to find the second smallest element in an array.
- Write a program to find that one element in array that occurs odd number of times, where every other element appears even number of times.
- Create a jagged array (adjacency list representation of a graph) with no of rows and no of columns in each row as specified by the user.
 Hint: Use Dynamic memory allocation (malloc() or calloc()) Input:
 Enter no of rows: 3
 Enter no of columns Row in 1: 3
 Enter no of columns Row in 2: 5
 Enter no of columns Row in 3: 2
 Enter the elements row wise:
 8 6 5
 8 4 6 9 7
 9 2
 Output:
 - 865

84697 92

- Write a program to find second largest number in the array.
- Write a program to find first repeating element in the array.
- Write a program to left rotate the array.
- Write a program to right rotate the array.
- Write a program to find the largest continuous sum.
- Write a program to print the sum of 2nd largest and 2nd smallest elements.
- Write a program to find the maximum product of two numbers multiplies in array (same index should not be used twice).
- Rearrange an array consisting of 1s and 0s such that they are alternatively arranged. Print minimum number of moves required.

0L+4T+12P=16 Hours

- In a given array, find two numbers whose sum equal k.
- Find the difference between positive and negative elements in the array.
- Implement sorting algorithms (Insertion, selection, bubble).

UNIT-2 STRINGS

PRACTICES:

Problems on Strings:

- Write a program to reverse a given string word by word.
- Write a program to find the first occurrence of non-repeating character in the given string.
- Write a program to compress the string as provided in the example.
- Write a program to expand a string as provided in the example.
- Write a program to reverse those words of a string whose length is odd.
- Write a program to check if a given matrix is symmetric or not.
- Write a program to convert all the cases of letter (Lower case -> Upper Case, Upper Case-> Lower Case).
- Write a program to reverse all the words (Not the entire sentence but individual words).
- Find the longest palindrome in a given string.
- Check if two strings are anagrams or not.
- Find minimum number of changes to be done to make a string palindrome.
- Convert Excel sheet name to number (A-1, B-2, Z-26, AA-27).
- Find number of possible palindromes present in a string.
- Write a C program to read a string s, and determine the number of words in s.

Example : s=oneTwoThree

There are 3 words in the string: 'one', 'Two', 'Three'.

Write a C program that reads a string S and remove all duplicates characters from the given string S.

NOTE: 1) Order of characters in output string should be same as given in input string.

2) String S contains only lowercase characters ['a'-'z'].

Example: S = Vignanuniversity

The program should generate the output as: Vignauersty

• Today Ron is reading the book. Due to some reason, he started hating the word 'are' (without quotes). So he decided to replace the substring 'are' with 'R'. Write a C program that reads a line of message 's' and replace the substring 'are' with 'R'. Example: s= Howareyou.

The program should generate the output as: HowRyou

- Write a program to concatenate the characters of the two given strings alternatively.
- Given a string S consisting of uppercase and lowercase letters, change the case of each alphabet in this string. That is, all the uppercase letters should be converted to lowercase and all the lowercase letters should be converted to uppercase. Input: Vignan University

Output: vIGNAN uNIVERSITY

- Write a program to insert a given character at the beginning and end of the given string.
- Given two Strings A and B. They are said to be friends if ASCII sum of the each individual string is divisible by 4 else they are not friends. You need to find whether given two strings are friends or not.

Sample Test case: Input: man nam vignan university Output: YES

NO

• Write a program to find the frequency of each digit in the given string.

Input Format

The first line contains a string, which is the given number.

Output Format

Print ten space-separated integers in a single line denoting the frequency of each digit, indicate that the integers are from 0 to 9.

Sample Input 0 a11472o5t6 Sample Output 0 0 2 1 0 1 1 1 1 0 0 Explanation 0 In the given string:

• 1 occurs two times.

- 2,4,5,6 and 7 occur one time each.
- The remaining digits and don't occur at all.
- Sherlock considers a string to be valid if all characters in the given string appear the same number of times. It is also valid if he can remove just 1 character at 1 index in the string, and the remaining characters will occur the same number of times.

Write a C program that reads a string s and determine whether it is valid or not. If valid, return YES, otherwise return NO.

Example: S=abc

This is a valid string because frequencies are {a:1,b:1,c:1}

S=abcc

This is a valid string because we can remove one c and have 1 of each character in the remaining string.

S=abccc

This string is not valid as we can only remove 1 occurrence of c. That leaves character frequencies of $\{a:1,b:1,c:2\}$

• Read a string containing characters A and B only. Your task is to change it into a string such that there are no matching adjacent characters. To do this, you are allowed to delete zero or more characters in the string.

Write a C program that finds the minimum number of deletions required.

Example: S=AABAAB

Remove A at positions 0 and 3 to make S=ABABA in 2 deletions.

Input Format

The first line contains an integer (the number of queries).

The next q lines each contain a string s to analyze.

Sample Input:

5

AAAA

BBBBB

ABABABAB

BABABA

AAABBB

Sample Output:

- 3 4 0 0 4
- Write a C program that reads a string 's' and it is said to be complete if it contains all the characters from a to z.

Input Format

First line of the input contains the number of strings N. It is followed by N lines each contains a single string.

Output Format

For each test case print "YES" if the string is complete, else print "NO"

Constraints 1 <= N <= 10

The length of the string is at max 100 & the string contains only the characters a to z.

• Write a C program that reads two strings and determine whether they share a common substring or not. A substring may be as small as one character.

Example;

S1=and

S2=art

The common substring in these two strings: a. Sample Input 2 hello world hi world

Sample Output YES

NO

SKILLS:

- > Analysis of the problem to be solved.
- > Application of various file operations effectively in solving real world problems.
- Develop C programs that are understandable, debuggable, maintainable and more likely to work correctly in the first attempt.

COURSE OUTCOMES:

Upon successful completion of the course, students will have the ability to:

No.	Course Outcome	Blooms Level	Module No.	Mapping with POs
1	Write simple, but complete, C programs.	Apply	1,2	1
2	Identify suitable data type for operands and design of expressions having right precedence.	Apply	1,2	1
3	Apply decision making and iterative features of C Programming language effectively.	Apply	1,2	1
4	Select problem specific data structures and suitable accessing methods.	Analyse	1,2	1,2

5	Design and develop non- recursive and recursive functions and their usage to build large modular programs and also able to design string manipulation functions.	Create	1,2	3
6	Develop C programs that are understandable, debuggable, maintainable and more likely to work correctly in the first attempt.		1,2	3,4

TEXT BOOKS:

- 1. Behrouz A. Forouzan, Richard F.Gilberg, "Programming for Problem Solving", 1st edition, Cengage publications, 2019.
- 2. Ajay Mittal, "Programming in C A Practical Approach", 1st edition, Pearson Education, India, 2010.

REFERENCE BOOKS:

- 1. Reema Thareja, "Computer Fundamentals and Programming in C", 1st edition, Oxford University Press, India, 2013.
- 2. Herbert Schildt, "C: The Complete Reference", 4th edition, Tata McGraw-Hill, 2017.
- 3. Byron S Gottfried, "Programming with C", 4th edition, Tata McGraw-Hill, 2018.

https://www.geeksforgeeks.org/best-way-to-start-with-competitive-programming-geeksforgeeks-cp-live-course/

22EN104 – TECHNICAL ENGLISH COMMUNICATION

Hours per week:

L	Т	Р	С
2	0	2	3

8L+0T+8P=16 Hours

PREREQUISITE KNOWLEDGE: Basic sentence formation, understanding contextual meanings, basic writing skills and moderate fluency in English.

COURSE DESCRIPTION AND OBJECTIVES:

In this course students will read, analyze, and interpret material from technical and general fields, and practice reading, writing, listening and speaking skills to gain exposure and functional English on a variety of contemporary topics. The overall course objective is to provide English for Specific Purposes(ESP) instruction to enhance students' reading, writing, listening and speaking skills through a practice in the language. It will aim to build students' confidence and motivation through exposure to academic skills like Note making/taking, Paraphrasing, Summarizing, Report Writing, Making Presentations etc., so as to generate interest in the language from an ESP perspective. Finally, students are expected through the course to gain key strategies and expression for communicating with professionals and non-specialists.

MODULE-1

UNIT-1

GENETICS

- **Reading** : Reading for **Note Making** Sub skills: Reading for global understanding (skimming), specific information (scanning), understanding main ideas and supporting ideas, guessing contextual meanings from the text. -Vocabulary building: commonly used roots, prefixes, and suffixes.
- Writing : Note making, organising main points and sub points, numbering and sequencing, suggesting titles, paraphrasing and summarising.

Functional grammar: Common Errors in Articles and Prepositions (Handout).

- Listening : Listening for Note Taking: top down and bottom up approach, listening for main ideas and supporting points.
- **Speaking : Presentation** in teams ideas on the topic summarised, making a PPT, effective introductions and conclusions, logical organisation of content, using appropriate structure and cohesive devices.

UNIT-2

ALIENS

Reading : Reading: predicting, skimming, scanning, reading for inference, extrapolative reading

Vocabulary building: Academic vocabulary from the text: synonyms, antonyms, Words often confused.

Writing : Paragraph writing; writing a topic sentence, supporting sentences, effective introductions and conclusions, use of cohesive devices. Types of Paragraphs: Descriptive, narrative, argumentative and expository.

Functional grammar: Common Errors inVerb forms and Conditional sentences (Handout)

- **Listening :** Listening for identifying parts from a description, listening to and sorting information, listening for specific information.
- **Speaking : Narrating/Retelling** an incident, using suitable cohesive devices/discourse markers Speaking of past and present habits/ activities/events - Speaking of future plans.

PRACTICES:

UNIT - 1

- Note making.
- Summarizing.
- Paragraph Writing.
- Error correction and Restructuring.
- Vocabulary building.
- Listening comprehension.
- Note taking.

MODULE-2

8L+0T+8P=16 Hours

8L+0T+8P=16 Hours

SOCIAL MEDIA – HEALTH AND NUTRITION

- **Reading** : Reading for factual information researching for supporting evidence skimming, scanning, **Vocabulary building:** One-word substitutes.
- Writing : Letter Writing- E-mail writing New age communication Format, protocol, and style-WhatsApp, Facebook and Twitter Functional grammar: Common Errors in Sub-Verb Agreement and Modals.
- **Listening :** Listening to a **Business Presentation**: Listening for deducing information, for abstract details and specific details, listening for taking a message.

Speaking : Making a presentation with a PPT on a topic assigned- organising the presentation using appropriate discourse markers - presenting a point of view - Extempore.

8L+0T+8P=16 Hours

UNIT-2

FASHION

Reading : Reading for data interpretation and information transfer from graphical aids to text reports (pictograms. tables, graphs, pie charts, flow charts), deducing specific information and general information.

Vocabulary building: business vocabulary, collocations, idioms and phrasal verbs.

Writing : Writing a Report: Drafting general and factual reports - writing an overview - an effective introduction - organising information into paragraphs (Stages of writing: planning /organising /writing /editing /rewriting)

Functional grammar: transformations and miscellaneous common errors.

- **Listening** : Listening to a Ted talk and sorting information taking notes from a discussion.
- **Speaking : Group Discussion** prerequisites -generating content initiating a discussion expressing one's opinion ~ leading a discussion agreeing/ disagreeing to someone's view cutting into a speech body language and voice modulation.

PRACTICES:

- E-mail writing.
- Letter writing.
- Report writing.
- Messaging in Social media.
- Extempore.
- Making PPTs.

SKILLS:

- Apply different sub skills like skimming, scanning, reading for information, reading for inference etc. to understand different kinds of text.
- > Apply different sub skills like top down, bottom up approaches to listening.
- > Use functional vocabulary relevant to engineering and technology to express ideas lucidly.
- Use appropriate sentence structure, cohesive devices to construct simple text in regular correspondence like e-mails and letters.

COURSE OUTCOMES:

Upon successful completion of this course, students will have the ability to:

CO No.	Course Outcomes	Blooms Level	Module No.	Mapping with POs
1	Apply a variety of strategies to interpret and comprehend spoken texts/ discourse using contextual clues.	Apply	1	6, 7, 8, 9, 10, 12

2	Apply appropriate reading strategies to interpret content / material related to engineering and technology domain.	Apply	1	6, 7, 8, 9, 10, 12
3	Participate in discussions and make short presentations on general and technical topics.	Apply	1, 2	6, 7, 8, 9, 10, 12
4	Possess an ability to write clearly on topics related to technology and workplace communication.	Analyz e	2	6, 7, 8, 9, 10, 12
5	Choose functional language, grammar structures, cohesive devices and skills of organisation to express clearly in speaking.	Evaluat e	2	6, 7, 8, 9, 10, 12

LANGUAGE LAB ACTIVITIES

Session - 1: Dictionary Skills

- Session 2: Introduction to Phonetics and Identifying Phonemes
- Session 3: Pronunciation Practice (Commonly mispronounced words)
- Session 4: Rosetta Stone (Exercises on LSRW)
- Session 5: Listening Comprehension (Summarising exercise on a Ted Talk)
- Session 6: Technical Presentations (Individual)
- Session 7: Technical Presentations (Team)
- Session 8: TOEFL Mastery

TEXT BOOK:

1. N P Sudharshana & C Savitha, "English For Technical Communication", Cambridge University Press, 2016.

REFERENCE BOOKS:

- 1. Balasubramanian T,"A Text book of Phonetics for Indian Students", Orient Longman, New Delhi, 1989.
- 2. Krishnaswamy, N and Sriraman, T, "Current English for Colleges", Trinity publications, 2016.
- 3. Mohan Krishna and Meera Banerjee, "Developing Communication Skills", Macmillan India Ltd. New Delhi, 1990.
- 4. Ashraf Rizvi M, "Effective Technical Communication", 2ndEdition, McGraw Hill Education, 2017.
- 5. Narayana Swamy V R, "Strengthen your Writing", Third Edition Orient Black Swan, New Delhi, 2005.

Image source: https://www.abebooks.com/9781316640081/English-Technical-Communication-Students-Book-1316640086/plp

22CS104–DIGITAL LOGIC DESIGN

Hours per week:

L	Т	Р	С
2	0	2	3

PRE-REQUISITE COURSE:

COURSE DESCRIPTION AND OBJECTIVES:

This course introduces the basic knowledge on number systems, analysis and design of combinational and sequential circuits. The course mainly focuses on designing digital circuits in optimized manner by using components like decoders, encodes, multiplexers. It also deals with design of sequential circuits and Programmable logic devices.

MODULE-I

UNIT-I

Number Systems: Review of number systems - Conversions, Binary codes. Boolean Algebra: Fundamental concepts of Boolean algebra basic theorems and properties. Gate-Level Minimization: Canonical and standard forms - SOP and POS forms, Logic gates, Algebraic simplification and realization with basic gates and universal gates, The map method – two, three, four variable K map; POS and SOP simplification; Don't care conditions; NAND and NOR implementation.

UNIT – II

Combinational Logic Circuits: combinational circuits analysis, design procedure; Half adder, Full adder, Half subtractor, Full subtractor, Binary adder/subtractor; BCD adder; Binary multiplier; Magnitude comparator; Decoders; Encoders; Multiplexers; De-Multiplexer.

-II

PRACTICES:

8L+0T+8P=16 Hour

8L+0T+8P=16 Hours

- Design and Implementation of
- Basic Gates
- Adders
- Subtractors
- Encoders and Decoders
- Multiplexers and Demultiplexers

MODULE-II

8L+0T+8P=16 Hours

Sequential Logic Circuits: Latches, Flip-Flops – SR, JK, D, T; Analysis of sequential circuits; Design procedure; Flip-flop conversion;

Registers and Counters: Shift registers; Ripple counters; Synchronous counters.

UNIT - II

8L+0T+8P=16 Hours

Memory and Programmable Logic: Random access memory; Read only memory; Programmable logic array; Programmable array logic.

PRACTICES:

- Design and Implementation of
- FlipFlops
- Registers
- Counters

SKILLS:

- ✓ Design of logical circuits using all types of gates.
- ✓ Minimizing of Boolean functions.
- ✓ Design of simple logical circuits.
- ✓ Design of different types of counters.

COURSE OUTCOMES:

Upon completion of the course, the student will be able to achieve the following outcomes:

COs	Course Outcomes	
1	Apply the knowledge of digital logic concepts to optimize digital circuits.	
2	Apply Boolean algebra rules and karnaugh map method to reduce the Boolean functions.	
3	Design Combinational digital circuits for given problem statement by applying the digital techniques	
4	Design and analyze sequential digital circuits for given problem statementand improve the performance by reducing the complexities.	
5	Analyze and differentiatevarious types of Programmable LogicDevices.	

UNIT – I

TEXTBOOK:

1. M Morris Mano and Michael D. Ciletti, "Digital Design", 5th edition, Pearson Education, 2013.

REFERENCE BOOKS:

- 1. John F.Wakerly, "Digital Design Principles and Practices", Third Edition, Pearson/PHI, 2015
- 2. Charles H.Roth. "Fundamentals of Logic Design", 6th Edition, Thomson Learning, 2013.
- 3. John.M Yarbrough, "Digital Logic Applications and Design", Thomson Learning, 2006.

II Year I Semester

Sl. No.	Course Code	Course Title	L	Т	Р	C
1	22ST202	Probability and Statistics	3	2	0	4
2	22TP201	Data Structures	2	2	2	4
3	22MS201	Management Science	2	2	0	3
4	22CS204	Computer Networks	3	0	2	4
5	22CS202	Computer Organization and Architecture	2	0	2	3
6	22CS104	Python Programming		0	2	3
7	22CT201	Environmental Studies		1	0	1
8	22SA201	Life Skills – I		0	2	1
9		NCC/ NSS/ SAC/ E-cell/ Student Mentoring/ Social activities/ Publication with good impact factor (Only 2 students can claim 1 paper/patent). These credits maybe earned on or before the end of IV semester	0	0	0	1
		Total	14	9	12	25
		Total 35				25

22ST202–PROBABILITY AND STATISTICS

Hours per week:

L	Т	Р	C
3	2	0	4

PREREQUISITE KNOWLEDGE: Basic knowledge in statistics and mathematics.

COURSE DESCRIPTION AND OBJECTIVES:

To provide students with foundation in elementary topics of statistics and probability such as descriptive statistics, correlation, probability, random variables, correlation, regression, and testing of hypothesis. The course emphasizes statistics to solve engineering and management problems.

MODULE-1

12L+0T+8P = 20 Hours

DESCRIPTIVE STATISTICS

Basic Definitions, Frequencies, Graphical Representation, Histogram, Ogive curves; Measures of Central tendency, Arithmetic mean, Median, Mode, Mean deviation, Standard deviation; Symmetry and Skewness, Karl Pearson's Coefficient of skewness.

UNIT-2

UNIT-1

PROBABILITY AND RANDOM VARIABLES

Probability: Introduction, Definition (Classical and Axiomatic approach), Addition theorem, Conditional probability, Multiplication theorem and Bayes theorem.

Random Variables: Random variables, Discrete and Continuous variables and distribution function.

PRACTICES:

- Various graphical presentation techniques.
- Measures of central tendency.

12L+0T+8P = 20 Hours

- Skewness.
- Karl Pearson's coefficient of skewness.
- Applications of addition theorem.
- Applications of multiplication theorem.

MODULE-2

UNIT-1

12L+0T+8P = 20 Hours

REGRESSION ANALYSIS AND DISTRIBUTIIONS

Correlation and Regression: Correlation, types, Pearson's coefficient of correlation, regression, regression lines.

Distributions: Introduction to distributions: Binomial, Poisson and Normal distributions with properties and applications.

UNIT-2

12L+0T+8P = 20 Hours

TESTING OF HYPOTHESIS

Testing large samples-one mean, two means, one proportion and two proportions. Testing small samplesone mean, two means (independent and paired samples), Chi square tests-goodness of fit and independence of attributes.

PRACTICES:

- Correlation.
- Karl Pearson's coefficient of correlation.
- Regression and regression lines.
- Applications of statistical distributions.
- Testing the large sample tests-one mean and two sample means.
- One proportion and two proportion tests.
- Testing small samples-one, two samples and paired tests.
- Chi-square test for goodness of fit.
- Chi-square test for independence of attributes.

SKILLS:

- Collect the data from various data sources and evaluate mean, median, mode mean deviation and standard deviation.
- > Identify the areas which we can apply the probability theory.

COURSE OUTCOMES:

Upon Successful completion of this course, students will have the ability to:

CO	Course Outcomes	Blooms	Module	Mapping
No.	Course Outcomes	Level	No.	with POs

1	Apply measures of central tendency, skewness, and Karl Pearson's coefficient of skewness to study the statistical data sets.	Apply	1	1,2
2	2 Apply the probability theory and their applications to measure the uncertainty.		1	1,2
3	3 Study the relations between statistical variables and can fit the mathematical models for association.		2	1,2,3
4	Test the statistical significances for various samples.		2	1,2,4
5	Identify the distribution type to measure the occurrences of chance.	Evaluate	2	1,4,5

TEXT BOOKS:

- 1. Sheldon M. Ross, An Introduction to Probability and Statistics for Engineers and Scientists, 3rd Edition, Academic Press, Elsevier.
- 2. S. C. Gupta and V. K. Kapoor, "Fundamentals of Mathematical Statistics", Sultan Chand & Sons, 2012.

REFERENCE BOOKS:

- 1. P. R. Vittal, "Mathematical Statistics", Margham Publications, Chennai, 2018.
- 2. Kishore S. Trivedi, "Probability and Statistics with Realiability, Queueing and Computer Science Applications", 2nd edition, Wiley Student edition, 2008.
- 3. A. Singaravelu, "Probability and Statistics", 22nd edition, Meenakshi Agency, 2015.

22TP201–DATA STRUCTURES

Hours per week:						
	L	Т	Р	С		
	2	2	2	4		

PREREQUISITE KNOWLEDGE: Programming in C.

COURSE DESCRIPTION AND OBJECTIVES:

This course is aimed at offering fundamentals concepts of data structures and explains how to implement them. It begins with the basic concepts of data, data structures and then introduces the primitive and non-primitive data structures in detail. It forms the basis for understanding various ways of representing data and its usage in different computing applications.

UNIT-1

MODULE-1

5L+6T+6P = 17 Hours

DATA STRUCTURES BASICS

Basic Terminology – data, information, datatype; Data Structures – Introduction, storage structuressequential and linked storage representations; classification of data structures; Applications of data structures.

Sorting: Selection Sort, Bubble Sort, Insertion Sort, Quick Sort and Merge Sort. **Searching**: Linear Search and Binary Search.

11L+10T+10P = 31 Hours

LINKED LISTS AND STACKS, QUEUES

Linked List: Introduction, Types of linked list – Singly linked list, doubly linked list and circular linked list, representation of linked list, Operations of linked list: Traverse forward/ reverse order, searching, insertion and deletion; Applications of linked lists.

UNIT-2

Stack – Introduction, array and linked representations, implementation and their applications; **Queue** – Introduction, array and linked representations, implementation; Types – Linear, circular and doubly ended queues – operations; Applications of Queues.

PRACTICES:

Problems on Recursion – Level 1

- Find the product of 2 numbers using recursion.
- Find the sum of natural numbers using recursion.
- Find the factorial of a number using recursion.
- Find the Nth term of Fibonacci series using recursion.
- Calculate the power using recursion.
- Write a recursive program for checking if a given number is a prime number.
- Given two integers write a function to sum the numbers without using any arithmetic operators.
- Convert a decimal to binary using recursion.
- Print all factors using recursion.
- Find the maximum product of digits among numbers less than or equal to N.

Problems Recursion – Level 2

- Implement insertion sort recursively.
- Write a program to find the numbers less than N that are product of exactly 2 distinct prime numbers using recursion.
- Implement selection sort recursively.
- Find the middle of a singly linked list using recursion.
- Find the sum of even numbers of an array using recursion.
- Check if a given array is in sorted order using recursion.
- Print alternate nodes of a linked list using recursion.
- Reverse a doubly linked list using recursion.
- Write a recursive function that returns all permutations of a given list.
- Implement bubble sort recursively.

Problems on Sorting and Searching – Level 1

- Implement the insertion sort function.
- Implement the bubble sort function.
- Implement the quick sort function.
- Implement the merge sort function.
- Implement the selection sort function.
- Implement linear search function.
- Implement binary search function.

Problems on SLL – Level 1

- Implement the insert function to insert nodes into a singly linked list (ascending order).
- Implement the insert function to insert nodes into a singly linked list (descending order).
- Implement the search node function.
- Implement the delete node function.
- Display forwards function.
- Display backwards function.

- Count the number of nodes in a singly linked list.
- Swap alternate nodes of a singly linked list.
- Move last node to the front of the linked list.
- Move first node to the last of the linked list.

Problems on Stacks – Level 1

- Implement two stacks using a single array.
- Given an array replace every element with nearest greater element on the right.
- Given a stack reverse the elements using only push and pop functions.
- Postfix evaluation using stack.
- Balance symbols.
- Find middle element in a stack.
- Remove middle element from a stack.
- Implement push and pop using linked list.
- Given an array of characters with the middle marked by X, check if the string is a palindrome.
- Maximum sum in sliding window.

Problems on Queues – Level 1

- Write a program to accept two numbers as input check if they are equal.
- Write a program to accept two characters as input and check if they are equal.
- Write a program to accept two numbers as input and print the greater of the 2 numbers.
- Write a program to accept two numbers as input and print the lesser of the 2 numbers.
- Write a program to accept 3 numbers as input and print the maximum of the 3.
- Write a program to accept 3 numbers as input and print the minimum of the 3.
- Write a program to accept a number as input and print EVEN if it is an even number and ODD if it is an odd number.
- Write a program to accept a number as input and check if it is divisible by 3. If it is divisible by 3 print YES else print NO.
- Write a program to accept a number as input and check if it is divisible by both 3 & 5. If it is divisible print YES else print NO.
- Write a program to accept a number as input and check if it is positive, negative or zero.

Problems on DLL – Level 1

- Implement insert function.
- Implement display forward function.
- Implement display backward function.
- Implement search function.
- Implement delete function.
- Reverse a doubly linked list from M to N.
- Find the sum of the odd and even nodes.
- Count odd keys of the linked list.
- Merge two sorted lists.
- Delete adjacent duplicate nodes.

Problems on CLL – Level 1

- Insert function (circular doubly linked list).
- Search function.
- Display forward.
- Display backward.

- Delete node (circular doubly linked list).
- Print the middle N nodes of a circular singly linked list.
- Move the last node of a circular singly linked list to the beginning.
- Delete adjacent duplicate nodes of a circular singly linked list.
- Delete nodes greater than a value from a circular doubly linked list.
- Find the sum of the nodes of a circular linked list.

Problems on Linked List – Level 2

- Given 2 sorted linked lists, print the common elements.
- Reverse a list (using Stack).
- Given a pointer to a node (not the last node), delete the node.
- Reverse a list (Recursive).
- Reverse a list (Iterative).
- Reverse a singly linked list in pairs (recursive).
- Reverse a singly linked list in pairs (iterative).
- Check if a singly linked list is a palindrome or not.
- Remove the loop if exists.
- Given 2 linked lists with data in the ascending order, merge them into a single list.

MODULE-2

8L+8T+8P=24 Hours

UNIT-1 TREES

Trees: Basic Terminology, Types of Trees, Binary Tree – Introduction, properties, array and linked representations; Tree traversals and their implementation; Expression trees; BST – definition and operations, AVL trees – definition and construction; Applications of binary trees.

UNIT-2

8L+8T+8P=24 Hours

GRAPHS & HASHING

Graphs: Basic Terminology, Types of Graphs, Graphs representations – adjacency matric, adjacency list; Traversals - breath first search and depth first search; Applications of graphs. **Hashing**: Introduction, Different hash functions, collision: avoidance and handling methods.

PRACTICES:

Problems on BST – Level 1

- Insert function.
- Insert function (recursive).
- Search function.
- Pre order traversal.
- Post order traversal.
- In order traversal.
- Level order traversal.
- Delete child node.
- Delete parent node.
- Delete nodes greater than a value from a circular doubly linked list.

Problems on Priority Queues – Level 1

- Meeting rooms problem.
- Ugly number.
- Find median from data stream.
- Find the top K frequent elements.
- Find K Pairs with smallest sums.
- Find the Kth smallest element in a sorted matrix.
- Trapping Rain Water.
- Rearrange String k distance apart.
- Sort characters by frequency.
- Solve the maze problem.

Problems on Graphs – Level 1

- Implement Graph data structure.
- Implement BFS iterative solution.
- Implement BFS recursive solution.
- Implement DFS iterative solution.
- Implement DFS recursive solution.
- Check if given graph is strongly connected or not.
- Check if given graph is strongly connected or not using DFS.
- Given a graph find the arrival and departure time of its vertices in DFS. Arrival time is the time when the vertex was explored for the first time, and departure time is the time at which all the neighbours are explored and are ready to backtrack.
- Given a directed acyclic graph and a source vertex, find the cost of the shortest path from source vertex to all other vertices present in the graph. If a vertex cannot be reached from given source vertex that distance may be printed as infinite.
- Given an undirected graph, check if the graph is 2 edge connected or not.

Problems on Hashing – Level 1

- Print a binary tree in vertical order.
- Find whether an array is subset of another array.
- Given an array A [] and a number x, check for pair in A [] with sum as x.
- Minimum operation to make all elements equal in array.
- Maximum distance between two occurrences of same element in array.
- Check if a given array contains duplicate elements within k distance from each other.
- Find duplicates in a given array when elements are not limited to a range.
- Most frequent element in an array.
- Smallest subarray with all occurrences of a most frequent element.
- First element occurring k times in an array.

Problems on Graphs – Level 2

- Find the shortest graph distances between every pair vertex in a given path. Assume that the graph does not have any negative edges.
- Find the shortest graph distances between every pair of vertices in a given path. The graph can have negative edges.
- Detect cycle in DFS.
- Count the number of connected components of a graph represented in the adjacent matrix.

- Count the number of connected components of a graph represented in the adjacent matrix using DFS.
- Find a spanning tree not necessarily a minimum spanning tree.
- Detect cycle in an undirected graph.
- Given an undirected graph, find its depth.
- Determine if a directed graph has a unique topological ordering.
- Given a directed acyclic graph and two vertices v and w, find the lowest common ancestor.

SKILLS:

- > Experienced to Store data and various types of data to handle.
- Ordering and sorting of data.
- > Indexing and Searching of required data from large data sequences.
- Exposed to various characteristics such as Linear or non-linear, Homogeneous or heterogeneous and Static and Dynamic.

COURSE OUTCOMES:

Upon completion of the course, the student will be able to achieve the following outcomes:

No.	Course Outcome	Blooms Level	Module No.	Mapping with POs
1	Explore the organization of several ADTs and the manipulation (searching, insertion, deletion, traversing) of data stored in various data structures.	Apply	1,2	1
2	Apply different data structures to solve a given problem.	Apply	1,2	1
3	Analyze the efficiency of using different data structures and choose the efficient data structure for solving a given problem.	Analyze	1,2	2
4	Develop new algorithms to solve various problems.	Create	1,2	3,4

TEXT BOOKS:

- 1. Reema Thareja, "Data Structures Using C", 2nd Edition, Oxford University Press, 2014.
- 2. Seymour Lipschutz, "Data Structures with C", 1st Edition, McGraw Hill Education, 2017.

REFERENCE BOOKS:

- 1. Ellis Horowitz and Sartaj Sahni, "Fundamentals of Data Structures", illustrated edition, Computer Science Press, 2006.
- 2. Richard F. Gilberg and Behrouz A. Forouzan, "Data Structures: A Pseudocode Approach with C", 2nd Edition, CENAGE Learning, 2005.
- 3. R G Dromey and Pearson, "How to solve it by Computer", 2nd edition, Impression edition, 1998.

https://www.youtube.com/watch?v=Qmt0QwzEmh0

22MS201–MANAGEMENT SCIENCE

Hours per week:

L	Т	Р	С
2	2	0	3

PRE-REQUISITE KNOWLEDGE: Basic knowledge on management

COURSE DESCRIPTION AND OBJECTIVES:

The goal of this course is to analyse the importance of management, significance of operation management and carry out production operations through work-study. Students will be able to analyse the markets, customers, competitors, and then plan HR function effectively.

UNIT-1

MODULE-1

6L+6T+0P =12 Hours

INTRODUCTION TO MANAGEMENT

Concepts of Management and organization- nature, importance and Functions of Management, Systems approach to Management - Taylor's Scientific Management Theory, Fayol's Principles of Management, Mayo's Hawthorne Experiments, Maslow's Theory of Human Needs, Douglas McGregor's Theory X and Theory Y, Herzberg's Two-Factor Theory of Motivation, Leadership Styles, Social responsibilities of Management.

UNIT-2

OPERATIONS MANAGEMENT

10L+10T+0P =20 Hours
Principles and Types of Plant Layout-Methods of production (Job, batch and Mass Production), Work Study -Basic procedure involved in Method Study and Work Measurement, Objectives, Need for Inventory control, EOQ, ABC Analysis, Purchase Procedure, Stores Management and Stores Records. Statistical Quality Control: control charts for variables and attributes (simple Problems), Acceptance Sampling

PRACTICES:

- Collect some examples with videos for types of production.
- Carry out production operations through work-study
- Practice problems with Inventory control methods and Quality Control charts

MODULE-2

UNIT-1

8L+8T+ 0P =16 Hours

HUMAN RESOURCES MANAGEMENT

Concepts of Human Resource Management, Basic functions of HR Manager: Manpower planning, Recruitment, Selection, Training and Development, Placement, Wage and Salary Administration, Promotion, Transfer, Separation, Performance Appraisal, Grievance Handling and Welfare Administration, Job Evaluation and Merit Rating.

UNIT-2

8L+8T+0P =16 Hours

MARKETING MANAGEMENT

Evolution of Marketing, Functions of Marketing Selling Vs Marketing, 4 P's of Marketing – Product Mix - Product Life Cycle – Place Mix – Channels of Distribution – Price Mix – Pricing Methods – Promotion Mix – Tools of Promotions.

PRACTICES:

- Select any Designation in an organization and try to describe its job description and job specifications
- How do you deal with grievances at your work
- Analyze marketing mix in various situations

SKILLS:

- > Expert in managerial skills
- Maintain social relations

COURSE OUTCOMES:

Upon successful completion of this course, students will have the ability to:

CO No.	Course Outcomes	Blooms Level	Module No.	Mapping with POs
1	Analyze the nature and importance of management	Analyze	1	1,2,4,6
2	Significance of Operations Management.	Analyze	1, 2	1,2,5
3	Carry out production operations through work-study	Apply	1, 2	1, 2, 3, 5
4	Analyze the markets, customers, and competition	Analyze	2	1,2,4,5,6

5	Plan and control the HR function effectively	Evaluate	1, 2	1,2,3,4,5,6
---	--	----------	------	-------------

TEXT BOOKS:

- 1. Stoner, Freeman, Gilbert, Management, 6th Ed, Pearson Education, New Delhi, 2004.
- 2. P. Vijay Kumar, N. Appa Rao and Ashnab, Chnalill, Cengage Learning India, 2012.
- 3. Aryasri: Management Science, TMH, 2004.

REFERENCES:

- 1. Kotler Philip & Keller Kevin Lane: Marketing Mangement 12/e, PHI, 2005.
- 2. Koontz & Weihrich: Essentials of Management, 6/e, TMH, 2005.
- 3. Thomas N. Duening & John M .Ivancevich Management Principles and Guidelines, Biztantra, 2003.

https://xueqi326.wordpress.com/semester-3/management-science/ Management Science

22CS204–COMPUTER NETWORKS

Hours per week:				
L	T	Р	С	
3	0	2	4	

PREREQUISITE KNOWLEDGE: JAVA programming and UNIX commands.

COURSE DESCRIPTION AND OBJECTIVES:

This course focuses on imparting knowledge about various protocols involved in LANs and WANs. In addition, it gives a good foundation on different protocols such as data link protocols, internet protocols, and transport protocols present in the respective layers of the data communication system.

MODULE-1

8L+0T+6P=14 Hours

INTRODUCTION TO COMPUTER NETWORKS AND INTERNET

Understanding of network and Internet, the network edge, the network core, Understanding of Delay, Loss and Throughput in the packet switching network, protocols layers and their service model, History of the computer network.

UNIT-2

UNIT-1

16L+0T+10P=26 Hours

APPLICATION LAYER & TRANSPORT LAYER

Principles of computer applications, Web and HTTP, E-mail, DNS, Socket programming with TCP and UDP. Introduction and transport layer services, Multiplexing and Demultiplexing, Connectionless transport (UDP), Principles of reliable data transfer, Connection-oriented transport (TCP), Congestion

control.

PRACTICES:

- Install Network Simulator 2/3. Create a wired network using dumbbell topology. Attach agents, generate both FTP and CBR traffic, and transmit the traffic. Vary the data rates and evaluate the performance using metric throughput, delay, jitter and packet loss.
- Create a static wireless network. Attach agents, generate both FTP and CBR traffic, and transmit the traffic. Vary the data rates and evaluate the performance using metric throughput, delay, jitter and packet loss.
- Create a mobile wireless network. Attach agents, generate both FTP and CBR traffic, and transmit the traffic. Vary the data rates and evaluate the performance using metric throughput, delay, jitter and packet loss.
- Implementation of one-way and two-way communication using TCP / UDP.
- Hello command is used to know whether the machine at the other end is working or not. Echo command is used to measure the round trip time to the neighbour. Implement Hello and Echo commands using JAVA.

MODULE-2

12L+0T+8P = 20 Hours

UNIT-1

NETWORK LAYER

Introduction to forwarding and routing, Network Service models, Virtual and Datagram networks, study of router, IP protocol and addressing in the Internet, Routing algorithms, Broadcast and Multicast routing.

UNIT-2

12L+0T+8P=20 Hours

THE LINK LAYER AND LOCAL AREA NETWORKS

Introduction to link layer services, error detection, and correction techniques, Multiple access protocols, addressing, Ethernet, switches, and VLANs.

PRACTICES:

- all the IP addresses on your network using Unicast, Multicast, and Broadcast on your network.
- e Packet tracer software to build network topology and configure using Distance vector routing and Link State routing protocols.
- different types of Network cables (Copper and Fiber) and prepare cables (Straight and Cross) to connect two or more systems.
 - a. Use a crimping tool to connect jacks.
 - b. Use a LAN tester to connect the cables.
 - c. Install and configure Network Devices: HUB, Switch and Routers (Consider both manageable and non-manageable

switches. Perform logical configuration of the system and set the bandwidth of different ports).

- d. Install and Configure Wired and Wireless NIC and transfer files between systems in Wired LAN and Wireless LAN. Consider both ad-hoc and infrastructure modes of operation.
- the commands such as Ping, Tracert, Ipconfig, pathping, telnet, FTP, getmac, ARP, Hostname, Nbtstat, netdiag, and Nslookup to solve various problems.

COURSE OUTCOMES:

Upon successful completion of this course, students will have the ability to:

CO No.	Course Outcomes	Blooms Level	Mod ule No.	Mapping with POs
1	Build the basic concepts of Network hardware, software and reference models.	Apply	1	1, 2, 12
2	Evaluate different physical layer media and switch-ing methods.	Evalua-tion	1	1, 2, 5, 12
3	Implement various protocols with modern tools.	Apply	1	1, 2, 3, 5, 12
4	Apply different protocols to perform end-to-end delivery and interaction with users.	Analyze	2	1, 2, 12
5	Analyze various design issues, protocols and functionalities of network layer.	Analyze	2	1, 2, 12
6	Demonstrate various protocols involved in data link layer operations.	Apply	2	1,2, 5

TEXT BOOKS:

- 1. Kurose and Ross, "Computer Networking- A Top-Down approach", 6th Edition, Pearson, 2017.
- 2. Behrouz Forouzan, "Computer Networks- A Top-Down approach", McGraw Hill, 2014.

REFERENCE BOOKS:

- 1. Andrew S. Tanenbaum, "Computer Networks", 5th edition. Pearson Education, 2014.
- 2. Behrouz A. Forouzan, "Data communications and Networking", 5th edition, TMH, 2017.
- 3. William Stallings, "Data and Computer Communications",

10th edition, Pearson Education, 2017.

4. Fred Halsall, "Computer Networking and the Internet", 5th edition, Addison Wesley, 2005.

22CS202-COMPUTER ORGANIZATION AND ARCHITECTURE

I	Hours	per v	veek:
L	Т	Р	С
2	0	2	3

PREREQUISITE KNOWLEDGE: Digital logic design.

COURSE DESCRIPTION AND OBJECTIVES:

This course covers the basics of modern Computer Organization and Architecture. The emphasis is on understanding the design of computer and its components. The student will learn the concepts of data representation, micro-operations, memory organizations and input output organization.

MODULE-1

UNIT-1

8L+0T+8P=16 Hours

INTRODUCTION, RTL, DATA REPRESENTATION AND COMPUTER ARITHMETIC Introduction, Register Transfer language & Data Representation: Organization and Architecture, Register Transfer, Bus and Memory Transfers, Data Representation-Fixed Point Representation, Floating Point Representation.

Computer Arithmetic: Fixed point arithmetic operations such as Addition and Subtraction, Multiplication Algorithms, Division Algorithms.

UNIT-2

8L+0T+8P=16 Hours

MICRO OPERATIONS AND BASIC COMPUTER ORGANIZATION AND DESIGN Micro operations: Arithmetic Micro operations, Logic Micro Operations, Shift Micro Operations,

Arithmetic Logic Shift Unit.

Basic Computer Organization and Design: Instruction Codes, Computer Register, Computer Instructions, Instruction Cycle, Memory – Reference Instructions. Register Reference Instructions, Input –Output and Interrupt.

PRACTICES:

- Design a Common bus system for eight registers with eight bits each using multiplexers.
- Design a Common bus system for four registers with four bits each using three state gate buffers.
- A digital computer has a common bus system for 16 registers of 32 bits each. The bus is constructed with multiplexers.
- How many selection inputs are there in each multiplexer? What size of the multiplexers are needed?
- How many multiplexers are there in the bus?
- Perform arithmetic operations (+42) + (-13) and (-42) (-13) in binary using signed 2's complement representation for negative numbers.
- Find the product using Booth Multiplication Algorithm.
 a. (9) X (13)
 b. (9) X (-13)
 c. (-9) X (13)
 d. (-9) X (-13)
- Perform the division of 27 and 4 using Division algorithm.
- Design a 4- bit combinational circuit decrementer using 4 full adder circuits.
- Register A holds the 8-bit binary 11011001. Determine the B operand and the logic micro operation to be performed in order to change the value in A to :
 a) 01101101 b) 11111101
- An 8-bit register contains the binary value 10011100. What is the register value after an arithmetic shift right? Starting from the initial number 10011 100, determine the register value after an arithmetic shift left, and state whether there is an overflow.
- Starting from an initial value of R =11011101, determine the sequence of binary values in R after a logical shift-left, followed by a circular shift-right, followed by a logical shift-right and a circular shift-left.
- Design arithmetic logic shift unit that performs different operations on 4 bits.

MODULE-2

10L+0T+10P=20 Hours

CIRCUITS, REGISTERS AND COUNTERS

Sequential Logic Circuits: Latches, Flip-Flops - SR, JK, D, T; Flip-flop conversion; Analysis of sequential circuits; Design procedure.

Registers and Counters: Shift registers; Ripple counters; Synchronous counters.

CPU AND MEMORY ORGANIZATION

Central Processing Unit: General Register Organization, STACK Organization. Instruction Formats,

Addressing Modes, Data Transfer and Manipulation, Program Control.

UNIT-1

Memory Organization: Memory Hierarchy, Main Memory, Auxiliary Memory, Associative Memory,

Cache Memory.

UNIT-2

6L+0T+6P=12 Hours

I/O ORGANIZATION

Input-Output Organization: Peripheral Devices, Input-Output Interface, Asynchronous data transfer, Modes of Transfer, Priority Interrupts, Direct Memory Access.

PRACTICES:

- The content of PC in the basic computer is 3AF (all numbers are in hexadecimal). The content of AC is 7EC3. The content of memory at address 3AF is 932E. The content of memory at address 32E is 09AC. The content of memory at address 9AC is 8B9F.
- What is the instruction that will be fetched and executed next?
- Show the binary operation that will be performed in the AC when the instruction is executed.
- Give the contents of registers PC, AR, DR, AC, and IR in hexadecimal and the values of E, I, and the sequence counter SC in binary at the end of the instruction cycle.
- Implement the given expressions into different addressing architectures. Y=(A-B)/(C*D + E) b. Y=A-B+C*(D *E+F)
- How many 128 x 8RAM chips are needed to provide a memory capacity of 2048 byte?
- How many lines of the address bus must be used to address 2048 bytes of memory? How many of these lines will be common to all chips?
- How many lines must be decoded for chip select and design the size of the decoders.
- A computer uses RAM chips or 1024 x 1 capacity.
- How many chips are needed, and show the connection of memory capacity 1024 bytes?
- How many chips are needed to provide a memory capacity or 16K bytes? Explain in words how the chips are to be connected to the address bus.
- How many characters per second can be transmitted over a 1200-baud line in each of the following modes? (Assume a character code of eight bits.)
- Synchronous serial transmission.
- Asynchronous serial transmission with two stop bits. Asynchronous serial transmission with one stop bit.
- Information is inserted into a FIFO buffer at a rate of m bytes per second. The information is deleted at a rate of n byte per second. The maximum capacity of the buffer is k bytes.
- How long does it take for an empty buffer to fill up when m >n? How long does it take for a full buffer to empty when m <n?
- Is the FIFO buffer needed if m = n?

COURSE OUTCOMES:

Upon successful completion of this course, students will have the ability to:

CO No.	Course Outcomes	Blooms Level	Module No.	Mapping with POs
1	Analyze Computer Organization and Computer Architecture, different arithmetic operations.	Analyze	1	1, 2, 12
2	Design different digital circuits required to perform	Apply	1	1, 2, 3, 12
	the micro operations.			
3	Design interface circuits for memory and peripheral, DMA and communication devices. Compare various modes of transfer.	Analyze	2	1, 2, 3, 4, 12
4	Evaluate the performance of a processor and memory in terms of speed, size and cost.	Evaluate	2	1, 2, 12
5	Analyze Computer Organization and Computer Architecture, different arithmetic operations.	Analyze	1	1, 2, 12

TEXT BOOK:

- 1. M. Morris Mano, "Computer System Architecture", 3rd Edition update, Pearson, 2017.
- 2. William Stallings, "Computer Organization & Architecture: Designing for Performance", 11th Edition, Pearson, 2019.

REFERENCE BOOKS:

- 1. Carl Hamacher, ZvonkoVranesic, SafwatZaky, "Computer Organization", 5th Edition, McGraw Hill, 2002.
- 2. Vincent P. Heuring and Harry F Jordan, "Computer Systems Design and Architecture ", 2nd edition Pearson/ Prentice Hall India 2004.
- David A. Patterson and John L. Hennessy, "Computer Organization and Design-The Hardware/ Software Interface", ARM Edition, 5th Edition, Elsevier, 2009.

22CS104–PYTHON PROGRAMMING

Hours Per Week:

L	Т	Р	С
2	0	2	3

PREREQUISITE KNOWLEDGE: Prior knowledge of any programming language and objectorientedconcepts is helpful but not mandatory.

COURSE DESCRIPTION AND OBJECTIVES:

This course offers sufficient knowledge required to understand the fundamental concepts of Python programming language. This course enables students to choose appropriate data structures (lists, dictionaries, tuples, sets, strings) for the given problem. In addition, the students will be able to create reliable, modular and reusable applications using Object- Oriented Programming approaches. At the end they will get an idea of how to access database using python programming, develop web applications, and using web Services using python Programming.

MODULE-1

UNIT-1

6L+0T+6P=12 Hours

INTRODUCTION

Introduction to python, Variables, Assignment, Keywords, Built-in functions, Indentation, Comments, Basic data types - integers, float, complex, Boolean, strings; Python program development, running python using REPL shell, Python scripts.

Operators and Expressions: Operators- arithmetic operators, comparison (relational) operators, assignment operators, logical operators, bitwise operators, membership operators, identity operators; Expressions and order of evaluations.

Control Structures: Conditional control structures - if, elif, else; Loop control structures - for, while, for... else, while...else, nested loops, break, continue, pass.

UNIT-2

PYTHON DATA STRUCTURES AND FUNCTIONS

Data Structures: Lists, Tuples, Sets, Strings, Dictionary - creation, accessing, basic operators and methods; List comprehensions.

Functions: Defining functions, calling functions, Passing arguments - keyword arguments, default arguments, positional arguments, variable-length arguments; Types of functionsanonymous functions, fruitful function, recursive functions; Scope of the variables- global and local variables, Development of recursive and non-recursive functions.

PRACTICES:

- A. Given an integer N, write a program to find its 1's complement.
- B. Given two integers N1 and N2, write a program to find their product without using multiplication('*') operator and loops.
- C. Given two integers N1 and N2 having same value, write a program to check whether N1 and N2 points to the same object or not.
- A. Given an Integer N, write a program to check whether given number is even or odd without using modulus operator.
- Given a number N, number of bits K and starting position P, write a program to extract K bits from a position P (from right) in the binary representation of N. Convert the extracted bits in decimal number.
- Given coordinates of centre of a circle, radius and a point coordinate, write a program to check whether the given point lies inside or on the circle, or outside the circle.
- Write a program to find the sum of digits in a given integer.

Given an integer N as an input, decides the geometrical figure for which the area has to be calculated, for example N=1 for circle, N=2 for rectangle, and N=3 for triangle. Write a program to display the area of the respective figure.

- A semi prime number is an integer which can be expressed as a product of two distinct primes. For example, 15 = 3*5 is a semi prime number but 9 = 3*3 is not.
 For a Given an integer number N, write a program to find whether it can be expressed as a sum of two semi-primes or not (not necessarily distinct).
- Given an integer amount X, write a program to find the minimum number of currency notes \$(500, 100, 50, 20, 10, 5, 2, 1) required for the given amount.

Input:

575

Where input is the amount for which we have to calculate the number of currency notes.

Output: 4

Explanation: Total amount = 1(500 dollar note) + 1(50 dollar note) + 1(20 dollar note) + 1(5 dollar note) = 575, hence the minimum number of notes required is 4.

• a given a string S and width W, write a program to wrap the string S into a paragraph of width W. Example:

Input:

4

Output:

- ABCD EFGH IJKL IMNO QRST UVWX Z
- rite a program to Measure the required time to access the first element, nth element and n/2 element stored in list and tuple data structure.

Given a list L of N numbers (integers), Write a program to find the sum of the elements of givenlist L with the corresponding elements of the reverse of list L. If list L has elements [1,2,3], then reverse of the list L will be [3,2,1] and the resultant list should be [4,4,4].

- a positive integer number n. Write a program to generates a dictionary d which contains (i, i*i*i) such that i is the key and i*i*i is its value, where i is from 1 to n (both included). Print the content of the dictionary d.
- rite a program to create a data structure to store student information such as regd no, name, percentage of marks, phone number and display the student details based on the order of percentage of marks.
- Given a string, design and implement functions to perform the following:
- a) remove vowels in the given string.
- b) count number of uppercase and lowercase letters.
- c) remove all special characters.
- d) check whether it is a palindrome or not.
- e) swap case of each letter.
- e a function that receives 3 numbers and returns the median, i.e. the number that is not the min and not the max, but the one in between.
- lists of integer numbers, write a function to perform the following operations.
- a. print elements that are common in both the lists. (Print without duplicates).
- b. print elements that are present in the first list and not present in second list.
- c. print elements that contain the first element of the first list and last element of the second list.
- d. print elements that contain sum of elements of first list and sum of elements of second list.
- a. print largest number of both the lists.
- b. print smallest number of both the lists.

MODULE-2

UNIT-1

8L+0T+8P=16 Hours

MODULES

Creating modules, Import Statement, From...Import Statement, Name Spacing, Creating user defined modules.

Standard Modules: sys, math, date, time, os, random and itertools modules.

Packages: Numpy, Pandas, Matplotlib, Requests, Nltk.

File Processing: Reading and writing files -creating a new file, writing to a file, reading text files, opening and closing files, reading, writing, tell (), seek (), rename ().

ERRORS AND EXCEPTIONS

Introduction to Exceptions, Handling Exception, Try Except Else and Finally Block, Raising Exceptions.

Simple Graphics and Image Processing: Overview of Turtle Graphics, Two Dimensional Shapes, Colours and RBG System and Image Processing

PRACTICES:

• Given a string 'S', find all possible permutations of the string S in lexicographic sorted order. Each Permutation size is "2" or "3".

Sample Input:

HACK

Expected Output: AC AH AK CA CH CK HA HC HK KA KC KH

• Write a program that finds area of the pentagon when length from center of a pentagon to vertex are given, the formula for computing the area of pentagon is $\sqrt[3]{3/2}$ s2, where s is the length of the side, the side can be computed using formula s= 2r sin $[\pi/5]$, where r is the length from the center of a pentagon to vertex.

Given X as a date. Write a program to find what the day is on that date.

Sample Input: 08 05 2015

Expected Output: Wednesday

Arun is working in an office which is N blocks away from his house. He wants to minimize the time it takes him to go from his house to the office. He can either take the office cab or he can walk to the office. Arun's velocity is V1 m/s when he is walking. The cab moves with velocity V2m/s but whenever he calls for the cab, it always starts from the office, covers N blocks, collects Arun and goes back to the office. The cab crosses a total distance of N meters when going from office to Arun's house and vice versa, whereas Arun covers a distance of (2–√*N)(2*N) while walking. Help Arun to find whether he should walk or take a cab to minimize the time.

Input Format:

A single line containing three integer numbers N, V1, and V2 separated by a space. Example-1:

Input:

5 10 15

Output:

Cab

• Create a binary NumPy array (containing only 0s and 1s) and convert a binary NumPy array in to to a Boolean NumPy array Convert the first column of a Data Frame as a Series by using suitable packages.

Sample Input: Orig inal Data Fra me col1 col2 col3 7 5 8 12 1 11 **Sample Output:** 01 12

23 34 47

11

• Create two text files and read data from two text files. Display a line from first file followed by the corresponding line from the second file.

Writee the following functions that are more robust to erroneous input data
a) To divide two numbers (To handle Zero Division Error).

b) To read two integer numbers and display them (To handle Value Error).

c) To display elements of a list (To handle Index Error).

d) To open a file and display file contents (To handle File Not Found Error).

- Write a python program to handle multiple exceptions using raise keyword.
- Write the spiral hexagon, where we use turtle to create a spiral structure. The final shape is a hexagon and there are various colors used in producing the sides of the hexagon.
- program to print it in a counterclockwise spiral form for a given square matrix.
 Sample Input:

4 25 1 29 7

- 24 20 4 32
- 16 38 29 1
- 48 25 21 19

Sample Output:

25 24 16 48 25 21 19 1 32 7 29 1 20 38 29 4

• Write a function that finds the nearest prime number of a given number.

COURSE OUTCOMES:

Upon successful completion of this course, students will have the ability to:

CO No.	Course Outcomes	Blooms Level		Mapping with POs
1	Analyze various features of programming language and their application in problem solving in computer programming to write, compile, and debug programs in python language.	Analyze	1	1, 2
2	Make use of different data types to designprograms involving decisions, loops, and functions.	Apply	1	1, 2, 5
3	Analyze the usage of different data structures for practical and contemporary applications for a given problem.	Analyze	1	1, 2, 3, 5
4	Develop functional, reliable and User-friendly Python programs for given problem statement and constraints.	Apply	2	1, 2, 3,5
5	Installing the python environment and related packages that are required for practical and contemporary applications.	Apply	2	1, 2,3,5

TEXT BOOKS:

- 1. Kenneth A. Lambert, "The Fundamentals of Python: First Programs", Cengage Learning, 2011.
- 2. Mark Lutz, "Learning Python", 5th edition, Orielly Publishers, 2013.

REFERENCE BOOKS:

- 1. Introduction to Computation and Programming Using Python. John V. Guttag, The MIT Press.
- 2. James Payne, "Beginning Python using Python 2.6 and Python 3", Wrox publishing.
- 3. Paul Gries, "Practical Programming: An Introduction to Computer Science using Python 3", The Pragmatic Bookshelf, 2nd edition, 4 Oct. 2013.
- 4. Allen B. Downey, "Think Python", 1st edition, Orielly publishing.

22CT201–ENVIRONMENTAL STUDIES

Hours per week:

L	Т	Р	С
1	1	0	1

PREREQUISITE KNOWLEDGE: General awareness regarding environmental problems and importance of environmental protection.

COURSE DESCRIPTION AND OBJECTIVES:

It is a multidisciplinary subject where different aspects of society and environment are dealt using a holistic approach. It is evolving to be the education for sustainable and ethical development both at a local and global level. It helps to prepare the next generation for planning appropriate strategies to address environmental issues. It identifies and creates solutions that conserve to manage ecosystem and biodiversity and helps to eliminate pollutants, toxicants, preserve air, water and soil quality. Environmental education recognizes impacts of global issues, enhances the public awareness and helps to take decisions towards environmentally responsible actions.

MODULE-1

UNIT-1

4L+4T+0P=8 Hours

INTRODUCTION TO ENVIRONMENT: NATURAL RESOURCES, ECOSYSTEMS AND BIODIVERSITY

Environment and sustainable development; Natural resources- forest, water, energy and land resources; Ecosystem – basic structural components, function and interactions in ecosystem, ecological succession.

UNIT-2

4L+4T+0P=8 Hours

BIODIVERSITY AND CONSERVATION

Introduction to biodiversity, types of biodiversity- species, genetic and ecosystem diversity; Threats to biodiversity - natural and anthropogenic, species extinctions, man wildlife conflicts; Biodiversity conservation - principles and strategies; in-situ and ex-situ conservation.

PRACTICES:

- Visit to a Biogas plant, Solar Power plant.
- Visit to a local area: river / pond / lake / forest / grassland / hill / mountain and study of different types of ecosystems, biodiversity study and documentation (herbarium sheet preparation).
- Set up an aquarium.
- Case study: Renewable energy use.

MODULE-2

UNIT-1

4L+4T+0P=8 Hours

ENVIRONMENTAL POLLUTION AND CLIMATE CHANGE

Air, water, soil, radioactive and noise pollution; Study of different pollutants (SO_x, NO_x, PAN, PAH etc.); Toxicity study; Climate change - greenhouse effect, acid rain, ozone layer depletion.

UNIT-2

4L+4T+0P=8 Hours

POLLUTION CONTROL DEVICES AND WASTEWATER TREATMENT TECHNOLOGIES

Air pollution control devices - Gravitational settling chambers, cyclonic separators, electrostatic precipitators, fabric filters and bio filters, Wastewater management.

PRACTICES:

- Visit to a sewage treatment plant and wastewater analysis.
- Case study: Recycling Technologies.
- Case study: Effects of contaminants on microorganisms.
- Report writing: 12 principles of green chemistry for environmental sustainability.
- Report writing: Environmental Impact Analysis, Local Disaster Management Plan.

SKILLS:

- > Create a biodiversity map of any habitat/ecosystem.
- > Strategize different ways of using renewable energy resources.
- > Design novel strategies and approaches for pollution control and waste management.

COURSE OUTCOMES:

Upon successful completion of this course, students will have the ability to:

CO	Course Outcomes	Blooms	Module	Mapping
No.		Level	No.	with POs
1	Apply the basic concepts of sustainable development, natural resource utilization and ecology for the purpose of environmental protection	Apply	1	1,6,7, 9, 10, 11, 12

2	Design remediation technologies for their abatement	Apply	2	1, 3,6,7, 9, 10, 11, 12
3	Analyze the biodiversity of different ecosystems and formulate various conservation approaches	Analyze	1	1, 7, 8, 9, 10, 11, 12
4	Analyze the presence of various environmental pollutants	Analyze	2	1, 6,7,9, 10, 11, 12
5	Recommend various waste management approaches and their implementation strategies	Evaluate	2	1,2, 7,8,9,10,11, 12

TEXT BOOKS:

- 1. A. Kaushik and C. P. Kaushik, "Perspectives in Environmental Studies", New Age International Publishers, 5th Edition, 2016.
- 2. Y. Anjaneyulu, "Introduction to Environmental Science", B. S. Publications, 2015.

REFERENCE BOOKS:

- 1. B. Joseph, "Environmental Studies", Mc Graw Hill Education, 2nd Edition, 2015.
- 2. S. Subash Chandra, "Environmental Science", New Central Book Agency, 2011.
- 3. M. Basu and S. Xavier, "Fundamentals of Environmental Studies", Cambridge University Press, 2016.
- 4. K. Mukkanti, "A Textbook of Environmental Studies", S. Chand Company Ltd., 2009.
- 5. M. Anji Reddy, "A Textbook of Environmental Science and Technology", B. S. Publications, 2008.

Image source: Biogas plant at VFSTR

Image file name: 22CT201 – ENVIRONMENTAL STUDIES

II Year II Semester

Sl. No.	Course Code	Course Title	L	Т	Р	С
1	22TP203	Advanced Coding Competency	0	0	2	1
2	22TP204	Professional Communication	0	0	2	1
3	22XXXX	Introduction to IoT	3	0	2	4
4	22XXXX	Microcontrollers	2	0	2	3
5	22CS201	Database Management Systems		2	2	4
6	22CS203	Depict-oriented programming through Java		0	4	4
7	22SA202	Life Skills – II	0	0	2	1
8		Open Elective – 1	3	0	0	3
		Total	12	2	16	21
9		Minor / Honors – 1	3	0	2	4
		Total	15	2	18	25
		Total		35		25

22TP203–ADVANCED CODING COMPETENCY

Hours per week:

L	Т	Р	С
0	0	2	1

PREREQUISITE KNOWLEDGE: Programming in C, Data Structures.

COURSE DESCRIPTION AND OBJECTIVES:

This course helps to understand the impact of the choice of data structures and design strategies to solve the problem in an efficient manner. This course also provides the understanding of advanced graph applications and also throw light in tractable intractable problems.

MODULE-1

UNIT-1

0L+0T+8P =8 Hours

STACKS, QUEUES AND SINGLE LINKED LISTS

PRACTICES:

Problems On Stacks & Queues

- Check if given stack of integers are consecutive or not (could be ascending or descending).
- Find the maximum sum in a sliding window using queues.
- Given a queue of integers, rearrange the elements by interleaving the first half with the second half.
- Given an integer k and a queue of integers, reverse the order of the first k elements of the queue.
- Given a maze in the form of a rectangular matrix filled with O, X or M where O represents an open cell, X represents a blocked cell and M represents landmines, find the shortest distance of every open cell in the maze from its nearest mine.
- For a given parenthesis expression, check whether it is balanced parenthesis or not.
- Reverse a number using stack.
- You are given a string s consisting of lowercase English letters. A **duplicate removal** consists of choosing two **adjacent** and **equal** letters and removing them. We repeatedly make **duplicate removals** on s until we no longer can.
- Find first Unique character in a string (Queue).
- Implement Tower of Hanoi problem.

Problems On Linked Lists

- Given a random pointer to a random node in a singly linked list, clone the list.
- Given a list rotate the list to the right by k places.

- Remove duplicates from a sorted list.
- Find fractional node in a singly linked list.
- Sort a linked list using constant space complexity.
- Delete a node in start, middle, end of Singly linked list.
- Add a node in start, middle, end of Singly linked list.
- Find whether given single linked list is circular or not.
- Arrange a singly linked list in Descending order.
- Addition of two numbers using Singly Linked List.

UNIT-2

0L+0T+8P =8 Hours

0L+0T+8P = 8 Hours

DOUBLY LINKED LISTS, CIRCULAR LINKED LISTS

PRACTICES:

Problems on Double Linked Lists and Circular Linked Lists

- Implement a clockwise rotation of a doubly linked list by N places.
- Count triplets in a sorted doubly linked list whose product is equal to a given value x.
- Find the product of all prime nodes in a doubly linked list.
- Find the count of common nodes in two doubly linked lists.
- Find pairs with given product in a sorted doubly linked list.
- Delete all the even nodes of a circular singly linked list.
- Count nodes in a circular linked list.
- Delete all prime nodes from a circular singly linked list.
- Exchange first and last nodes in a circular linked list.
- Reverse a doubly circular linked list.
- Linear search using a stack of incomplete sub problems.
- 1 2 3 4 5 6 in stack S is push X is pop, SSSSXXSSSXXX.
- Recursively remove all adjacent duplicates.
- Check if a given singly linked list is a palindrome using stack.
- Convert a multilevel singly linked list to a singly linked list.
- Remove duplicates from an unsorted doubly linked list.
- Sort a doubly linked list using insertion sort.
- Check if a doubly linked list of characters is palindrome or not.
- Swap Kth node from beginning with Kth node from end in a Double Linked List.
- Convert a Binary Tree into Double Linked List.

MODULE-2

UNIT-1

TREES

PRACTICES:

Problems on Trees

- Given a sorted doubly linked list, convert it into a balanced BST.
- Given a singly linked list with data in the ascending order, convert it into a height balanced BST.
- Print the leaf to root path for every leaf node in a binary tree.
- Write a function to implement the reversed level order traversal of a binary tree.
- Truncate a given binary tree to remove nodes that lie on a path having sum less than K.
- Find the vertical sum in a given binary tree.

- Delete minimum & Maximum element from a BST.
- Implement Inorder, preorder and postorder tree traversal techniques.
- Print Kth largest element in a BST.
- Implement Zig-Zag tree traversal.

UNIT-2

GRAPHS

PRACTICES:

Problems on Graphs

- Given a directed acyclic graph, determine whether there is a path that visits every vertex exactly once.
- Reverse a directed graph such that each edge from v to w is replaced by an edge from w to v.
- Find the shortest path in a graph that visits each vertex at least once, starting and ending at the same vertex.
- Find the minimum number of throws required to win a snake and ladder game.
- Implement DFS of a Graph.
- Implement BFS of a Graph.
- Detect whether a cycle is present in an undirected graph.
- Detect cycle in a Directed Graph.
- Find Shortest Distance to goal node from root node in a graph.
- Find no. of nodes in Kth level of a Graph.

SKILLS:

- Experienced to Store data and various types of data to handle.
- Ordering and sorting of data.
- > Indexing and Searching of required data from large data sequences.
- Exposed to various characteristics such as Linear or non-linear, Homogeneous or heterogeneous and Static and Dynamic.

COURSE OUTCOMES:

Upon completion of the course, the student will be able to achieve the following outcomes:

No.	Course Outcome	Blooms Level	Module No.	Mapping with POs
1	Apply various data structures to solve a different algorithm.	Apply	1,2	1
2	Investigate the various data structures to solve a given problem in an efficient manner.	Analyse	1,2	2
3	Design and implement an appropriate hashing function for an application.	Create	1,2	4

0L+0T+8P =8 Hours

TEXT BOOKS:

- 1. Reema Thareja, "Data Structures Using C", 2nd Edition, Oxford University Press, 2014.
- 2. Seymour Lipschutz, "Data Structures with C", 1st Edition, McGraw Hill Education, 2017.

REFERENCE BOOKS:

- 1. Ellis Horowitz and Sartaj Sahni, "Fundamentals of Data Structures", illustrated edition, Computer Science Press, 2006.
- 2. Richard F. Gilberg and Behrouz A. Forouzan, "Data Structures: A Pseudocode Approach with C", 2nd Edition, CENAGE Learning, 2005.
- 3. R G Dromey and Pearson, "How to solve it by Computer", 2nd edition, Impression edition, 1998.

https://www.geeksforgeeks.org/best-way-to-start-with-competitive-programming-geeksforgeeks-cp-live-course/

22TP204–PROFESSIONAL COMMUNICATION

Hours per week:

L	Т	Р	С
0	0	2	1

PREREQUISITE KNOWLEDGE: High School-level English.

COURSE DESCRIPTION AND OBJECTIVES:

To improve the overall professional communication skills (LSRW) of students and prepare them for their profession as engineers and managers. To provide them exposure to conventions of corporate communication and training them on how to function in the business world.

MODULE-1

UNIT-1

0L+0T+8P=8 Hours

BASICS OF BUSINESS WRITING SKILLS, PRACTICING BUSINESS CORRESPONDENCE AND REPORT WRITING

Business English Vocabulary: Glossary of most commonly used words (formal and informal usage).

Elements of Technical Writing: Sentence structure, reducing verbosity, arranging ideas logically, building coherence, cohesive devices and transitional words.

Mechanics of Writing: elementary rules of grammar, choice of diction, elementary principles of composition, matters of form, punctuation, conventions of business communication, language and professional tone, code of conduct (not sending illegal, offensive, disparaging personal remarks or comments) in written business communication.

Business Correspondence: E-mail: nature and scope, e-mail etiquette, clear call for action, common errors in composing e-mails, office communication such as meeting agenda and notice, circular and memo.

Letter-Writing: Formal and informal letters, structure of formal letters, expressions of salutations, different types of letters [such as sales letter, complaint letter, response to the complaint letter (dispute resolution), letter of permission, letter of enquiring, claim letter – letter of apology etc], introductory and concluding paragraphs and clear call for action.

Professional Proposal/Report: Differentiating proposals and reports, Drafting formal business proposals, types of reports such as factual reports, feasibility reports and survey reports, parts of a report (such as title page, declaration, acknowledgements, table of contents, abstract, introduction, findings, conclusion and recommendations).

New Age Corporate Communication Media: Importance of social media communication and Etiquettes, form and structure, sharing texts through Twitter, Whatsapp, instgram etc.

UNIT-2 0L+0T+8P=8 Hours PRACTICING COMMUNICATIVE LANGUAGE IN VARIOUS PROFESSIONAL CONTEXTS

Speaking: Speaking in business context, assertiveness, politeness, making requests, queries and questions, negotiations, asking for information, offering suggestions, conflict resolution, contacting clients, initiating, addressing delegates (in public), delivering the presentation effectively, telephone etiquettes, delivering seminar/proposal/report effectively, team meeting etiquettes (face to face and conference call), making effective one minute presentations(JAM) and participating in Group Discussions.

PRACTICES:

- Basic grammar practice, framing paragraphs on topics allocated, paraphrasing an article or a video in your own words, finding topic sentences in newspaper articles, finding out new words from a professional viewpoint and understanding the meaning and its usage.
- Perusing samples of well-prepared business emails, memo, letter writing and short proposals and reports, students will draft business correspondence writing tasks and different proposals/reports on topics assigned.
- Watching videos/listening to audios of business presentations, classroom activities of team and individual presentations, using PPTs, mock exercises for BEC speaking, agreeing, disagreeing politely, developing content, extended speaking in Group Discussion(s).

MODULE-2

UNIT-1

0L+0T+8P=8 Hours

READING AND COMPREHENDING BUSINESS DOCUMENTS

Reading: Reading and comprehending business documents, learning business register, regularizing the habit of reading business news, suitable vocabulary, skimming and scanning a text for effective and speedy reading and dealing with ideas from different sectors of corporate world in different business contexts.

UNIT-2

0L+0T+8P=8 Hours

IMPARTING AND PRACTICING LISTENING SKILLS

Listening: Specific information in business context, listening to telephonic conversations / messages and understanding the correct intended meaning, understanding the questions asked in interviews or in professional settings, summarizing speaker's opinion or suggestion, enable active listening.

PRACTICES:

• Hand-outs; matching the statements with texts, finding missing appropriate sentence in the text from multiple choices, using right vocabulary as per the given context and editing a paragraph.

• Working out BEC/TOEFL/IELTS listening exercises with hand-outs; matching the statements with texts, finding missing appropriate sentence in the text from multiple choice- multiple choices, using right vocabulary in context-editing a paragraph, listening to a long conversation such as an interview and answer MCQ s based upon listening.

SKILLS:

- > To enhance listening and spoken abilities of students needed for professional and social success in interpersonal situations, group interactions, and personal and professional presentations.
- > Know and practice specific functions and vocabulary in a business context.
- > Produce short business reports, proposals and correspondence.
- > Write various business documents through reading techniques.

COURSE OUTCOMES:

Upon successful completion of the course, students will have the ability to:

COs	Course Outcomes	Blooms Level	Module No	POs
1	Possess comprehensive skills in listening and reading business texts in formal context.	Apply	2	7
2	Communicate effectively both in their academic as well as professional environment.	Apply	2 &1	10
3	Clear grasp on the register of business language.	Analyze	1	8
4	Possess the ability to write business reports and proposals clearly and precisely to succeed in their future.	Create	1	12
5	Make effective presentations and participate in formal context.	Create	2	10

TEXT BOOK:

1. S. Schnurr, "Exploring Professional Communication: Language in Action", London: Routledge, 2013

REFERENCE BOOKS:

- Brook Hart Guy, "Cambridge English Business Bench Mark: Upper Intermediate", 2nd Edition: CUP, 2014.
- 2. Cambridge University Publication, "Cambridge: BEC VANTAGE Practice Papers", CUP, 2002.
- 3. J. Seely, "The Oxford Guide to Effective Writing and Speaking", Oxford University Press, 2005.

https://www.coursera.org/specializations/improve-english

22XXXX-INTRODUCTION TO IOT

H	Hours per week:					
	L	Т	Р	С		
	3	0	2	4		

PREREQUISITE KNOWLEDGE: Computer Networks, Wireless Sensor Networks

COURSE DESCRIPTION AND OBJECTIVES:

Internet of Things (IoT) is presently a hot technology worldwide. Government, academia, and industry are involved in different aspects of research, implementation, and business with IoT. IoT cuts across different application domain verticals ranging from civilian to defense sectors. These domains include agriculture, space, healthcare, manufacturing, construction, water, and mining, which are presently transitioning their legacy infrastructure to support a IoT. To introduce the terminology, technology and its applications, to introduce the concept of M2M (machine to machine) with necessary protocols.

MODULE-1

12L+0T+8P=20 hours

Evolution of Internet of Things, Characteristics of IoT,IoT Architectures,Core IoT Functional Stack, IoT communication models, IoT Communication APIs, IoT Levels & Deployment Templates, Sensors, Actuators, Domain Specific IoTs: IoT applications for Home Automation, Cities, Environment, Energy, Retail, Logistics, Agriculture, Industry, health and Lifestyle.

UNIT-2

UNIT-1

12L+0T+8P=20 hours

DESIGN AND DEVELOPMENT: Design Methodology, Embedded computing logic, Microcontroller, System on Chips, IoT system building blocks, Arduino, Raspberry Pi, Installation, Node MCU– Board details, IDE programming, Interfaces (serial, SPI, I2C),, Platform: Axonize, BlynkIoT platform, Fogwing.

PRACTICES:

- Demonstration and study of Raspberry Pi board, GPIO Pins and familiarity of various sensors.
- Switching LED on/off from Raspberry Pi Console.

- Interfacing Rain Sensing Automatic Wiper System.
- Interfacing to identify accident and send alert messages.
- Interfacing smoke sensor to give alert message to fire department.

MODULE-2

UNIT-1

12L+0T+8P=20 hours

Application Transport Methods: Supervisory Control and Data Acquisition, Application Layer Protocols: CoAP and MQTT, Transport Layer, Network Layer- IPv4, IPv6, 6LoWPAN, RPL, Datalink layer: IEEE 802.15.4,802.11ah, Wireless HART,ZWave, Bluetooth Low Energy, Zigbee.

UNIT-2

12L+0T+8P=20 hours

IoT Enabling Technologies: Wireless Sensor Networks, Big Data Analytics, System Management with NETCONF-YANG, Introduction to cloud storage models and Communication APIs, WAMP-AutoBahn for IoT, Xivelycloud for IoT Python Web Application Framework: Django Framework-Roles of Model, Template and View.

PRACTICES:

- Implementation of Traffic Light System based on density, to decrease congestion.
- Design and develop IoT Solar Power Monitoring System.
- Design and develop Patient health monitoring system.
- Implementation of Home Automation System using WiFi Module
- Design and Implementation of uploading sensor data into cloud using Python.
- Design the Network Configuration and System Management with IoT devices using NETCONF-YANG and SNMP-NETCONF.

SKILLS:

- Sensor Identification and IoT system design.
- Sensor data analysis
- > Tool usage for developing IoT applications.

COURSE OUTCOMES:

Upon successful completion of this course, students will have the ability to:

CO No.	Course Outcomes	Blooms Level	Module No.	Mapping with POs
1	Illustrate the impact and challenges posed by IoT networks leading to new architectural models.	Analyze	1	4, 6
2	Design an end-to-end Machine-learning model to realize solutions for real-world problems.	Design	1	3
3	Applyvarious machine-learning models to develop IoT applications.	Apply	2	1
4	Compare and contrast the deployment of smart objects and the technologies to connect them to network	Evaluate	2	4

TEXT BOOKS:

- 1. Arshdeep Bahga and Vijay Madisetti "Internet of Things: A Hands-on Approach", Universities Press, 2015.
- 2. Rajkumar Buyya and Amir Vahid Dastjerdi "Internet of Things: Principles and Paradigms", Morgan Kaufmann, 2016.
- 3. Getting Started with Raspberry Pi, Matt Richardson & Shawn Wallace, O'Reilly (SPD), 2014.
- 4. Raspberry Pi Cookbook, Software and Hardware Problems and solutions, Simon Monk, O'Reilly (SPD), 2016.
- 5. IoT Fundamentals: Networking Technologies, Protocols and Use Cases for Internet of Things, David Hanes, Gonzalo Salgueiro, Patrick Grossetete, Rob Barton and Jerome Henry, Cisco Press, 2017.

REFERENCE BOOKS:

- 1. Matt Richardson & Shawn Wallace "Getting Started with Raspberry Pi", O'Reilly (SPD), 2014.
- 2. Waltenegus Dargie, Christian Poellabauer, "Fundamentals of Wireless Sensor Networks: Theory and Practice".
- 3. Beginning Sensor networks with Arduino and Raspberry Pi Charles Bell, A press, and 2013.

22XXXXX-MICRO CONTROLLERS

Hours per week:

UNIT-1

INTRODUCTION AND ARCHITECHTURE OF CORTEX-M PROCESSORS

Introduction to ARM Cortex-M Processors, Introduction to Embedded Software Development, General information about the Cortex-M3 and Cortex-M4 processors, Features of the Cortex-M3 and Cortex-M4 processors. Architecture introduction, Programmer's model, Behavior of the application program status register (APSR), Memory system, Exceptions and interrupts, System control block

UNIT-2

LPC2148 CONTROLLER:

LPC 2148 Controller Architecture: Features, Architecture, Functional pin description, On-chip Flash memory, On chip SRAM, General purpose I/O.

PRACTICES:

- Introduction to KeiluVision 4 software.
- 8-bit, 16-bit, 32 bit Arithmetic and Logical operations.
- Searching a number, Find and replace the number in a given array.
- Find the smallest/largest number, Arrange the given numbers in sorting order.
- Block transfer using load/store instructions.
- Blinking of LEDs in port 0 or port 1 in LPC2148.
- Read the input from one port and display into output port using LPC2148.

MODULE-2

UNIT 1

LPC-2148 PERIPHERALS:

LPC 2148 Peripherals-1: PLL, ADC, Timers and counters, Real-time clock, pulse width modulator

Unit II

LPC-2148 PERIPHERALS:

LPC 2148 Peripherals-2: UART, USB, I2C bus controller, Vector interrupt controller.

PRACTICES:

- Blinking of LEDs with specific time delay using on-chip Timer of LPC2148.
- Generation of PWM signals using LPC2148.
- Demonstrate the on-chip components of LPC2148.
- Minor project based on the interest of students with LPC2148

TEXT BOOKS:

- 1. Steve Furber, "ARM System on Chip Architecture", 2nd edition, Pearson education, 2014.
- 2. Andrew N Sloss, Dominic Symes and Chris Wright, "ARM system developer's guide", Morgan Kaufmann Publication, Elsevier, 2004.

REFERENCE BOOKS:

- 1. William Hohe and Christopher Hinds, "ARM Assembly Language: Fundamentals and Techniques", 2nd edition, CRC Press, 2015.
- 2. "LPC214x User Manual (UM10139)", Volume 1, Philips Semiconductors, 2015. (https://www. nxp.com/docs/en/user-guide/UM10139.pdf)
- 3. <u>https://www.engineersgarage.com/arm-projects/how-to-start-programming-arm7-basedlpc2148-microcontroller</u>.
- 4. https://circuitdigest.com/search/node?keys=lpc2148. 5. http://www.electronicwings.com/arm7.
 6. https://onlinecourses.nptel.ac.in/noc20_cs15/preview

22CS201–DATABASE MANAGEMENT SYSTEMS

Hours per week:

L	Т	Р	С
2	2	2	4

PREREQUISITE KNOWLEDGE: Discrete Mathematical Structures.

COURSE DESCRIPTION AND OBJECTIVES:

This course presents an introduction to database management systems with an emphasis on how to organize, maintain and retrieve data efficiently from a relational database. It also focuses on requirements gathering and conceptual, logical, physical database design. The objective of the course is to enable the student to understand database design, expressing queries using SQL, query optimization and transaction processing.

MODULE-1

UNIT-1

DATABASE SYSTEM CONCEPTS

Databases And Database Users: Introduction; Characteristics of the database approach; Actors on the scene; Advantages of using DBMS approach.

Database System Concepts and Architecture: Data models, Schemas and instances; Three-Schema architecture and data Independence; Database languages and interfaces; The database system environment; Centralized and Client-Server architectures for DBMS.

Conceptual Data Modeling and Database Design: Entity types, Entity sets, Attributes and keys; Relationship types, Relationship sets, Roles and structural constraints; Weak entity types; Relationship types.

UNIT-2

6L+10T+12P=28 Hours

10L+6T+4P=20 Hours

RELATIONAL DATABASE DESIGN

Relational Database Design by ER–To-Relational Mapping: Relational Database design using ER-to-Relational mapping.

The Relational Data Model and Relational Database Constraints: Relational model concepts; Relational model constraints and Relational database schemas.

Relational Algebra: Unary relational operations - SELECT and PROJECT; Relational algebra operations from set theory; Binary relational operations- JOIN and DIVISION.

SQL: SQL data definition and data types; specifying constraints in SQL, Basic retrieval queries in SQL; INSERT, DELETE, and UPDATE statements in SQL.

PRACTICES:

- Design ER Model for various real time database applications.
- Development of Relational Database schemas for Company/Student/Sailors/ using DDL constructs of SQL.
- Apply various DML Commands such as select, insert, update etc. of SQL on Relational Database.
- Design of Relational Database schemas by specifying different types of Constraints.
- Apply various Relational Database operators (Arithmetic, Logical & comparison) and string-matching constructs of SQL.
- Expressing queries using Aggregate Functions of SQL on Relational Database.
- Queries on Relational Database using GROUP BY, HAVING and ORDER BY clauses of SQL.

MODULE-2

8L+8T+12P=28 Hours

UNIT-1

NORMALIZATION

Complex Queries, Triggers, Views: More complex SQL retrieval queries; Specifying constraints as assertions and actions as triggers; Views (virtual tables) in Pl/SQL.

Basics Of Functional Dependencies and Normalization for Relational Databases: Informal design guidelines for relation schemas; Functional dependencies-inference rules, equivalence and minimal cover; Normal forms based on primary keys; Boyce-Codd normal form; Properties of relational decompositions, multi valued dependency, join dependencies.

UNIT-2

8L+8T+4P=20 Hours

TRANSACTION PROCESSING

Introduction To Transaction Processing Concepts and Theory: Introduction to transaction processing; Transaction and system concepts; Desirable properties of transactions; Characterizing schedules based on serializability.

Concurrency Control Techniques: Two-phase locking techniques for concurrency control, concurrency control based on timestamp ordering.

Database Recovery Techniques: Recovery concepts; Shadow paging; The ARIES recovery algorithm. **Indexing Structures for Files and Physical Database Design:** Single level and multi-Level indexing; Dynamic multi-level indexing using B-trees and B+ trees.

PRACTICES:

- Design and Development of company database and expressing Nested queries using SQL.
- Design and Development of student database and specifying queries using set operations.
- Design and Development of sailor's database and specifying queries using different types of JOINs.
- Implementation of PL/SQL programs with Control Structures.
- Implementation of PL/SQL programs with Procedures.
- Implementation of PL/SQL programs with Function.
- Implementation of PL/SQL programs with Triggers.
- Creation and dropping of VIEWS.
- Relation R has eight attributes ABCDEFGH. Fields of R contain only atomic values. F = {CH -> G, A -> BC, B -> CFH, E -> A, F -> EG} is a set of functional dependencies (FDs) so that F+ is exactly the set of FDs that hold for R. How many candidate keys does the relation R have?
- Apply various DCL and TCL constructs of SQL on Relational Database.

SKILLS:

- > Develop E-R model for real life applications.
- Design of relational databases for real world applications.
- > Devise queries using relational algebra and SQL.
- > Analyze transaction processing, concurrency control and recovery techniques.

COURSE OUTCOMES:

Upon completion of the course, the student will be able to achieve the following outcomes:

CO No	Course Outcomes	Blooms Level	Module No.	Mapping with POs
1	Develop an E-R model for real life applications.	Apply	1	1,10
2	Design and normalize databases for real time applications.	Create	1	1,3
3	Devise queries using Relational Algebra and SQL.		2	2
4	Express queries using database tools like Oracle, DB2, MYSQL.		2	5,10

TEXT BOOKS:

- 1. Ramez, Elmasri and Shamkant B. Navathe, "Fundamentals of Database Systems", 7th Edition, Pearson Education, 2016.
- 2. Raghu Rama Krishnan and Johannes Gehrke, "Database Management Systems", 3rd Edition, Tata McGraw Hill, 2013.

REFERENCE BOOKS:

- 1. Abraham Silberschatz, Henry F.Korth and S.Sudarshan, "Database System Concepts", 7th edition, Tata Mc Graw Hill,2019.
- 2. Allen G. Taylor "Database Development for Dummies" 1st Edition, 2011
 - 3. <u>C. J. Date</u> "Introduction to Database Systems" 7th Edition, Addison Wesley, 2003.

https://www.youtube.com/watch?v=lDpB9zF8LBw

22CS203 – OBJECT ORIENTED PROGRAMMING THROUGH JAVA

Hours per week:					
	L	Т	Р	С	
	2	0	4	4	

PREREQUISITE KNOWLEDGE: Classes, Objects and Inheritance.

COURSE DESCRIPTION AND OBJECTIVES:

This course is about the fundamentals of Object-Oriented Programming (OOP) Concept and OOP-based software development methodology. Java as a class-based and pure OOP language is used to demonstrate and implement appropriate concepts and techniques. The students are exposed to the concepts, fundamental syntax, and the thought processes behind object- oriented programming. By end of the course, students will acquire the basic knowledge and skills necessary to implement object-oriented programming techniques in software development using Java.

MODULE-1

UNIT - 1

History of Java, Byte code, JVM, Java buzzwords, OOP principles, Data types, Variables, Scope of variables, Operators, Control statements, Type conversion and casting, Arrays.

Concepts Of Classes and Objects: Introduction to methods, Method over loading, Constructors, Construct or over loading, Usage of *static* with data and method, Access control, *this* key word, Garbage collection, String class, String Tokenizer.

UNIT-2

10L+0T+20P=30 Hours

6L+0T+12P=18 Hours

INHERITANCE AND EXCEPTIONS

Inheritance: Type so finheritance, Member access rules, Usage of *super* key word, Method *overriding*, Usage of *final*, Abstract classes, Interfaces - differences between abstract classes and interfaces, defining an interface, implementing interface, applying interfaces, variables in interface and extending interfaces. Packages-defining, creating and accessing a package, importing packages, access control in packages.

Exception Handling: Concepts of exception handling, Types of exceptions, Usage of try, catch, throw, throws and finally keywords, Built-in exceptions, User defined exception.

PRACTICES:

There is a telecommunication company called "Powered Air" who have approached you to build their Interactive Voice Response (IVR) system. write a Java program and be able to provide the following menu (given below):

Note: User should provide an input for each menu display. Welcome to Powered Air service. What would you like to do?

b.

d.

- a. Know my balance.
- c. Know number of free calls available.
 - 1. Prepaid Bill Request
 - 3. GPRS activation
 - 5. Special GPRS Offers
 - 7. Go back to Previous menu
- 2. Customer Preferences

More

4. Special Message Offers

Know my validity date

6. 3G Activation

You are free to display your own messages in this IVR.

- Create a class *Rectangle*. The class has attributes length and width. It should have methods that calculate the perimeter and area of the rectangle. It should have read Attributes method to read length and width from user.
 - Hint: Area of rectangle = length * width, Perimeter of rectangle = 2*(length+width). 0
- Implement a Java Program that reads a line of integers, and then displays each integer, and the sum of all the integers (use StringTokenizer class).
- Implement a java program to print all tokens of a string on the bases of multiple separators (use StringTokenizer class).
- Using inheritance. one class can acquire the properties of others. Consider a class Animal that has only one method "walk". Next, create a Bird class that also has a fly method. Finally, create a bird object that can both fly and walk.
- ,Write Using inheritance the following code in your editor 1. A class named *Arithmetic* with a method named "add" that takes integers as parameters and returns integer denoting their an sum. 2. A class named Adder that inherits from a superclass named Arithmetic.

• Note: Your classes should not be Public.

When a subclass inherits from a superclass, it also inherits its methods; however, it can also override the superclass methods (as well as declare and implement new ones). Consider the Sports class having methods *getName*()[which returns name of sport] and *getNumberOf TeamMembers*()[which returns noof team members] create a *Soccer* class that inherits from the *Sports* class. We can override the get Name method and return a different subclass-specific string and override *getNumberOfTeamMembers method and* return noof team members

- Implement a java program to create an abstract class named *Shape* that contains an empty method named *number Of Sides* ().Provide three classes named *Trapezoid*, *Triangle* and *Hexagon* such that each one of the classes extends the class *Shape*. Each one of the classes contains only the method *number Of Sides* () that shows the number of sides in the given geometrical figures.
- You are given an interface *Advanced Arithmetic* which contains a method signature *int divisor_sum(int n)*. You need to write a class called My Calculator which implements the interface.*divisor_sum* function just takes an integer as input and return the sum of all its divisors. For example divisors of 6 are 1, 2, 3 and 6, so *divisor_sum* should return 12. The value of n will be at most 1000.
- Implement a Java program for the following
- Creation of simple package.
- Accessing a package.
- Implement a Java program to read two numbers a,b from user and perform division a/b,if the user passes b value as zero, handle the exception using try and catch otherwise display the result.
- Create a class called *Customer* with data members account_number, balance (initialize with 10000), and member functions *print()*, *deposit()*, and *withdraw()*. Print method display account number and balance. If withdraw amount is less than current balance while withdrawing, throw an exception "In Sufficient Funds". If the input is 1 do print. If the input is 2 withdraw (). If the input is 3 deposit. If the input is 4 terminate program.
- Implement a Java program which acceptsage as input from the user and throws an exception
 - \circ "Not Eligible to Vote" when age is <=18 otherwise print "Eligible to Vote".

MODULE-2

UNIT-1

8L+0T+16P=24 Hours

MULTI THREDING AND FRAMEWORK

Multithreading:Concepts of multi threading, Differences between process and thread, Thread life cycle, Creating multiple threads using Thread class and Runnable interface, Synchronization, Thread priorities, Inter thread communication.

Collection Framework: Collections Overview, Collection Interfaces - List, Set, Map, List – Array List, Linked List, Vector, Set - HashSet, TreeSet, Map - HashTable, HashMap, accessing a collection via an Iterator, comparator, comparable.

UNIT-2

8L+0T+16P=24 Hours

SWINGS

GUI Programming With Swing: Delegation event model-Events, Event sources, Event Listeners, Event classes, handling mouse and keyboard events.

Exploring Swing Controls: JLabel and Image Icon, JText Field, JButton, JCheckBox, JRadioButton, JTabbed Pane, JList, JCombo Box.

PRACTICES:
Print in Order

Suppose we have a class:
public class Foo {
 public void first() { print("first"); }
 public void second() { print("second"); }
 public void third() { print("third"); }
}

The same instance of Foo will be passed to three different threads. Thread A will call first(), thread B will call second(), and thread C will call third(). Design a mechanism and modify the program to ensure that second() is executed after first(), and third() is executed after second().

Note:

We do not know how the threads will be scheduled in the operating system, even though the numbers in the input seem to imply the ordering. The input format you see is mainly to ensure our tests' comprehensiveness.

Example 1:

Input: nums = [1,2,3]

Output: "firstsecondthird"

Explanation: There are three threads being fired asynchronously. The input [1,2,3] means thread A calls first(), thread B calls second(), and thread C calls third(). "firstsecondthird" is the correct output.

Example 2:

Input: nums = [1,3,2]

Output: "firstsecondthird"

Explanation: The input [1,3,2] means thread A calls first(), thread B calls third(), and thread C calls second(). "firstsecondthird" is the correct output.

Flood Fill:

An image is represented by an m x n integer grid image where image[i][j] represents the pixel value of the image.

You are also given three integers sr, sc, and color. You should perform a flood fill on the image starting from the pixel image[sr][sc].

To perform a flood fill, consider the starting pixel, plus any pixels connected 4-directionally to the starting pixel of the same color as the starting pixel, plus any pixels connected 4-directionally to those pixels (also with the same color), and so on. Replace the color of all of the aforementioned pixels with color.

Return the modified image after performing the flood fill.

Example 1:

Input: image = [[1,1,1],[1,1,0],[1,0,1]], sr = 1, sc = 1, color = 2

Output: [[2,2,2],[2,2,0],[2,0,1]]

Explanation: From the centre of the image with position (sr, sc) = (1, 1) (i.e., the red pixel), all pixels connected by a path of the same color as the starting pixel (i.e., the blue pixels) are colored with the new color.

Note the bottom corner is not coloured 2, because it is not 4-directionally connected to the starting pixel.

Example 2:

Input: image = [[0,0,0],[0,0,0]], sr = 0, sc = 0, color = 0 Output: [[0,0,0],[0,0,0]]Explanation: The starting pixel is already colored 0, so no changes are made to the image.

• Count words in a given string

The input parameter is a list of strings representing lines of text.

Count how often the word occurs in the text.

If the word "kitten" occurred in a text 23 times, then its entry would be "kitten - $23\n$ ". Return statistics as a String containing all the entries.

Omit all words which contain less than 4 letters and appear less than 10 (the words which are too small or to rare) The entries in the resulting String should be also sorted by their amount and then in alphabetical order if it is needed.

- Implement a Java program for handling mouse events when the mouse entered, exited, clicked, pressed, released, dragged and moved in the client area.
- Implement a Java program for handling key events when the key board is pressed, released, typed.

- Implement a Java swing program that reads two numbers from two separate text fields and display sum of two numbers in third text field when button "add" is pressed.
- Implement a Java program to design student registration form using Swing Controls. The form which having the following fields and button "save". Form Fields are: Name, RNO, Mail id, Gender, Branch, and Address.
- Implement a java program using swings to design a multiple choice question having three options (use radio button), display the message using dialog box "Your answer is wrong" if the user selects wrong option otherwise display, "Your answer is correct."

SKILLS:

- > To analyse and develop algorithm for real life problems using Java.
- > Experience with developing and debugging programs in different IDEs.
- > Develop multi-threaded applications.
- > Creating web applications.

COURSE OUTCOMES

Upon successful completion of this course, students will have the ability to:

CO No.	Course Outcomes	Blooms Level	Module No.	Mapping with POs
1	Apply object oriented concepts on real time scenarios.	Apply	1	1,2
2	Apply the concepts of Multithreading and Exception handling to develop efficient and error free codes	Apply	1, 2	1,2
3	Design and develop Java applications to solve real world problems by using modern tools and collection framework	Create	2	3,5
4	Design and develop GUI based applications using swings forinternet and system based applications.	Create	2	3,5

TEXT BOOKS:

- 1. Herbert Schildt, "Java the complete reference", 12th Edition, McGraw Hill, Education, 2021.
- 2. M.T. Somashekara, D.S. Guru, K.S. Manjunatha, "Object-Oriented Programming with Java", 1st Edition, PHI Learning, 2017.

REFERENCE BOOKS:

- 1. E. Balagurusamy, "Programming with Java", 6th Edition, McGraw Hill, 2019.
- 2. Mark Lassoff," Java Programming for Beginners: Learn the fundamentals of programming with Java", 1st Edition, Packt Publishing Limited,2017.
- 3. Philip Conrod, Lou Tylee," Learn Java GUI Applications : A JFC Swing Tutorial", 11th Edition, Kidware Software, 2019.

https://www.datasciencecentral.com/wp-content/uploads/2021/10/8667507462.jpeg

III Year I Semester

Sl. No.	Course Code	Course Title	L	Т	Р	C
1	22TP301	Soft Skills Lab	0	0	2	1
2	22CS207	Operating Systems	2	0	2	3
3	22CS206	Design & Analysis of Algorithms	2	2	2	4
4	22XXXX	Wireless Networks	3	0	2	4
5	22XXXX	Inter-Disciplinary Project – Phase I	0	0	2	0
6	22XXXX	Industry Interface Course	1	0	0	1
7		Department Elective – 1	3	0	2	4
8		Open Elective – 2	3	0	0	3
9		NCC/ NSS/ SAC/ E-cell/ Student Mentoring/ Social activities/ Publication with good impact factor (Only 2 students can claim 1 paper/patent). These credits maybe earned on or before the end of VI semester	0	0	0	1
		Total	14	2	12	21
10		Minor / Honors – 2	3	0	2	4
		Total	17	2	14	25
		Total		33		25

22TP301- SOFT SKILLS LABORATORY

Hours per week:

L	Т	Р	С
0	0	2	1

PREREQUISITE KNOWLEDGE: Grasp on their own academic achievements.

COURSE DESCRIPTION AND OBJECTIVES:

To impart employability skills like resume preparation and facing interviews. To enable trainees to develop interpersonal and leadership skills and to train them on work place skills like making presentations, participating in group discussions etc.

MODULE-1

UNIT-1

PERSONALITY DEVELOPMENT

Soft Skills: Need for soft skills, professionalism, employability skills; Communication: Need for effective communication - the process of communication, levels of communication, flow of communication, choice of diction and style with reference to setting (formal, semi-formal or informal); communication networks, barriers to communication, miscommunication, noise and ways to overcome the barriers; Career Planning: Job vs. career, SWOT analysis.

UNIT-2

0L+0T+8P=8 Hours

LANGUAGE AND VOCABULARY

Vocabulary Building: Word etymology, roots, prefixes & suffixes, synonyms & antonyms, collocations, one-word substitutes, analogies, idioms and phrases, contextual guessing of unfamiliar words, taskoriented learning; Reflection of language on Personality, Gender sensitive language in MNCs, Mind your language, Seven essential skills for a team player; attentive listening, intelligent questioning, gently persuading, respecting other's views, assisting others, sharing, participating actively.

PRACTICES:

- Self-Introduction.
- Personal and Academic SWOC.
- Johari Window.
- Giving and taking opinions of Self Vs others and assessing oneself.
- Goal setting.
- Short, Mid and Long Term goals planning the semester.
- Time management: four quadrant system.
- Stephen Covey Time Management Matrix planning a semester.
- Stress-management.
- Questionnaire to assess level of stress.
- 50 words towards resume preparation and interviews.
- Newly coined words.
- Gender sensitive words and Words acceptable in Indian context and objectionable international context.

MODULE-2

0L+0T+8P=8 Hours

UNIT-1

LANGUAGE IN ACTION

Functional English: Situational dialogues, Role plays (including small talk); Group Discussion: Articulation and flow of oral presentation, dynamics of group discussion, intervention, summarizing and conclusion, voice modulation, content generation, Key Word Approach (KWA), Social, Political, Economic, Legal and Technical Approach (SPELT), View Point of Affected Part (VAP), language relevance, fluency and coherence – 11^{th} and 12^{th} weeks; Resume preparation: Structure and presentation, defining career objective, projecting one's strengths and skill-sets, summarizing, formats and styles and covering letter-Statement of Purpose.

0L+0T+8P=8 Hours

UNIT-2

PREPARING FOR PRESENTATIONS AND INTERVIEWS

Facing Interviews: Interview process, understanding employer expectations, pre-interview planning, opening strategies, impressive self-introduction, answering strategies, other critical aspects such as body language, grooming, other types of interviews such as stress-based interviews, tele- interviews, video interviews, frequently asked questions (FAQs) including behavioral and HR questions and the aspect looked at by corporate during interviews; Presentation Skills: Selection of a topic, preparing an abstract, gathering information, organizing the information, drafting the paper, citing reference sources – writing striking introductions, discussing the methodology used, developing the argument, presentation style, language, presenting the paper and spontaneously answering audience questions.

PRACTICES:

- Opening and closing a telephonic conversation.
- Making an appointment.
- Making a query.
- Offering/Passing on information.
- Communicating with superiors.
- Expressing agreement/objection.
- Opening bank account (combination of prepared and impromptu situations given to each student).
- Group Discussions on various topics.
- Preparing SoP and Resume.
- Mock interviews on the FAQs including feedback.
- Oral presentation with the help of technology (Preparing PPT and presenting).

SKILLS:

- > Balance social and emotional intelligence quotients though SWOC, JOHARI etc. activities.
- > Prepare tailor made resume and face various job interviews with enriched personality traits.
- > Career planning with clear personal and professional goals.
- > Solve personal and professional life hiccups with confidence and maturity.

COURSE OUTCOMES:

Upon successful completion of the course, students will have the ability to:

CO No.	Course Outcomes	Blooms Level	Module No	POs
1	Have the ability to introspect on individual strengths and weaknesses, and emerge as a balanced personality with improved self-awareness and self-worth .	Apply	1	12
2	Observe gender sensitive language and workplace etiquette in his professional life.	Analyze	1	9
3	Be able to prepare a resume and gain the confidence to face an interview.	Create	1&2	10

4	Possess the interpersonal skills to conduct himself/herself effectively in everyday professional and social contexts.	Apply	2	8
5	Bring professionalism into his/her daily activities.	Create	2	8

TEXTS BOOKS:

- 1. Adrian Furnham, "Personality and intelligence at work", Psychology Press, 2008.
- 2. S. P. Dhanvel, "English and Soft skills", Orient Blackswan, 2011.

REFERENCE BOOKS:

- 1. Edward Holffman, "Ace the corporate personality", McGraw Hill, 2001.
- 2. John Adair Kegan Page, "Leadership for innovation", Kogan, 2007.
- 3. Krishna Mohan & NP Singh, "Speaking English effectively", Macmillan, 2008.
- 4. Rajiv K. Mishra, "Personality Development", Rupa & Co. 2004.

Image: https://choosework.ssa.gov/blog/2019-07-23-soft-skills-an-intro-to-effective-communication

22CS207–OPERATING SYSTEMS

ł	Hours per week:					
	L	Т	Р	С		
	2	0	2	3		

PREREQUISITE KNOWLEDGE: Knowledge of computers fundamentals, Computer organization & Digital logic and its design.

COURSEDESCRIPTIONANDOBJECTIVES:

This course aims at concepts and principles of Operating Systems, its overall responsibility inacting as an interface between the system's hardware components and the user. Further, it also helps students to understand the different scheduling policies, process synchronization mechanisms, deadlock handling mechanisms and memory management techniques.

MODULE-1

UNIT-1

10L+0T+10P=20 Hours

LINUX FILE SYSTEM & PROCESS SCHEDULING

Introduction to LINUX File System: The LINUX file System, File System Hierarchy, File system Commands, File Attributes, File Permissions.

Filters: cmp, comm, diff, head, tail, find, cut, paste, sort, uniq.

Regular Expressions: grep, egrep, fgrep, Sed- line addressing, context addressing, text editing, substitution.

Introduction to Operating System: What Operating System do; Operating System Structure; Process concept-overview, Process Scheduling, Operations on Process; Inter Process Communication; Threads;

Process (CPU) Scheduling-Scheduling Criteria, Scheduling Algorithms; Multiple-Processor scheduling;

UNIT-2

6L+0T+6P=12Hours

PROCESS SYNCHRONIZATION & DEADLOCKS

Process Synchronization: The critical-section problem; Peterson's solution; Synchronization hardware; Semaphores; Classical problems of synchronization; Monitors.

Deadlocks: Deadlock characterization; Methods of handling deadlocks; Deadlock prevention; Deadlock avoidance; Deadlock detection and recovery.

PRACTICES:

• Use the cat command to create a file containing the following data. Call it mytable.txt usetabsto separate the fields.

1425 ravi15.654320 ramu26.276830 sita36.151450 raju21.86

- a. Use the cat command to display the file, mytable.txt.
- b. Use the vicomm and to correct any errors in the file, mytable.txt.

- c. Use the sort command to sort the file mytable.txt according to the first field.
- d. Call thesortedfilemytable.txt (same name)
- e. Printthefilemytable.txt.
- f. Use the cut &paste commands to swap fields 2and 3mytable.Call itmytable.txt(same name)
- g. Print the new file, mytable.txt.
- Write a shell script that takes a command–line argument and reports on whether it is directory, a file, or something else.
- Write a shell script that accepts one or more file name as arguments and convertsall of them to uppercase, provided they exist in the current directory.
- Write a shell script that displays a list of all the files in the current directory to which the user has read, write and execute permissions.
- Write a shell script that computes the total and average marks of a student according to the following;
- Ifaveragemarks > 69 then result is Distinction .
- Ifaveragemarks > 59 and < 70 then result is First Class .
- Ifaveragemarks≥49and≤60thenresultis—SecondClass||If average marks ≤50 then result is —Pass||.
- Note that any subject marks \leq 40then result is—Faill.
- Accept student name and six subject marks through the keyboard.
- Write an interactive file-handling shell program. Let it offer the user the choice of copying, removing, renaming, or linking files. Once the user has made a choice, have the program ask the user for the necessary information, such as the file name, new name and so on.
- Write a shell script, which receives two file names as arguments. It should check whether the two file contents are same or not. If they are same then second file should be deleted.
- Write a shell script that accepts a file name starting and ending line numbers as arguments and displays all the lines between the given line numbers.
- Write a shell script that deletes all lines containing a specified word in one or more files supplied as arguments to it.
- Implementation of new process creation and its communications.
- Implement of thread creation and deletion.
- Implementation of FCFS scheduling.
- Implementation of SJF and RR Scheduling.
- Implementation of producer consumer problem.
- Implementation of Banker's algorithm for Dead lock avoidance.

MODULE-2

UNIT-1

8L+0T+8P=16 Hours

MEMORY MANAGEMENT

Memory Management: Basic concept of memory management, Swapping, Contiguous Memory Allocation, Paging, Structure of the Page Table, Segmentation.

Virtual Memory Management: Demand Paging, Page Replacement: Optimal, First in First Out (FIFO), Second Chance (SC), Not recently used (NRU), Least Recently used (LRU), Allocation of Frames.

UNIT-2

8L+0T+8P=16 Hours

SECONDARY STORAGE STRUCTURE

Secondary Storage Structure: Over view of mass-storage structure, disk scheduling;

File System Interface - File concept, Access Methods, Directory & Disk Structure, File-System Mounting, File Sharing, Protection; File-system structure.

File System Implementation- Directory implementation, Allocation Methods, Free Space Management.

PRACTICES:

- Assume that you have a page-reference string for a process with m frames (initially all empty). The page-reference string has length p, and n distinct page numbers occur in it.
 - a) What is a lower bound on the number of page faults?
 - b) What is an upper bound on the number of page faults?
- Consider the following page-replacement algorithms. Rank these algorithms on a five-point scale from "bad" to "perfect" according to their page-fault rate. Separate those algorithms that suffer from Belady's anomaly from those that do not.
 - a) LRU replacement.
 - b) FIFO replacement.
 - c) Optimal replacement.
 - d) Second-chance replacement.
 - Consider the page reference string: 1, 2, 3, 4,2, 1, 5, 6, 2, 1, 2, 3,7, 6, 3, 2, 1, 2, 3, 6.

How many page faults would occur for the following replacement algorithms, assuming one, two, three, four, five, six, and seven frames? Remember that all frames are initially empty, so your first unique pages will cost one fault each.

- LRU replacement.
- FIFO replacement.
- Optimal replacement.
- How many page fault soccur for your algorithm for the following reference string with four page frames? 1, 2, 3, 4, 5, 3, 4, 1, 6, 7, 8, 7, 8, 9, 7, 8, 9, 5, 4, 5, 4, 2.
- What is the minimum number of page faults for an optimal page replacement strategy for thereference string above with four page frames?

- Consider a demand-paged computer system where the degree of multiprogramming is currently fixed at four. The system was recently measured to determine utilization of the CPU and the paging disk. Three alternative results are shown below. For each case, what is happening?
 - a) Can the degree of multiprogramming be increased to increase the CPU utilization? Is the paging helping?
 - b) CPU utilization 13 percent; disk utilization 97 percent.
 - c) CPU utilization 87percent; disk utilization 3 percent.
 - d) CPU utilization 13 percent; disk utilization 3 percent.
- Implementation of Disk scheduling algorithm–FCFS.
- Implementation of Disk scheduling algorithm–SSTF and SCAN.

SKILLS:

- Manage open-source operating systems like Ubuntu, Fedora etc.
- ► Know the concepts of Processes scheduling and File Systems.
- > Identification of different disk scheduling methodologies.

COURSE OUTCOMES:

Upon completion of the course, the student will be able to achieve the following out comes:

CO No.	Course Outcomes	Blooms Level	Module No.	Mapping with POs
1.	Classify the basic concepts of operating system and explore Linux ecosystem.	Analyze	1	1
2.	Apply the concepts of process scheduling algorithms and process synchronization techniques to derive the efficiency of resource utilization.	Apply	1	1, 2, 3, 5, 12
3.	Analyze the requirements for attempting Operating systems principles.	Analyze	1,2	1,2,12
4.	Design the various memory management schemes For a given scenario.	Create	2	3,5
5.	Apply the concepts of file system interface and implementation.	Apply	1,2	2,5

TEXTBOOKS:

- 1. Sumitabha Das, Unix concepts and applications^{||}, TMH Publications, 4th Edition, July 2017.
- 2. Abraham Silberschatz, Peter Baer Galvin and Greg Gagne, "Operating System Concepts", 9th Edition, John Wiley & SonsInc, 2013.

REFERENCE BOOKS:

- 1. B.A.Forouzan & R.F.Giberg,—Unix and shell Programming[∥], Thomson, 1st Edition, New Delhi, 2003.
- 2. Richard. Stevens and Stephen A Rago, "Advanced Programming in the Unix Environment", 3rd Edition, Addison-Wesley, 2013.
- 3. William Stallings, "Operating Systems-Internals and Design principles" PHI, 7th Edition, 2012.
- 4. Gary J. Nutt. Addison-Wesley, "Operating Systems: A Modern Perspective", Aug 2001, 2^eEdition.

https://www.123rf.com/stock-photo/operating_system.html

22CS206–DESIGN AND ANALYSIS OF ALGORITHMS

Hours per week:

L	Т	Р	С
2	2	2	4

PREREQUISITE KNOWLEDGE: Programming for problem solving, Discrete Mathematical Structures, Data Structures.

COURSE DESCRIPTION AND OBJECTIVES:

This course offers the basic knowledge required to analyze the asymptotic performance of algorithms. In addition, this course provides the knowledge required to solve different problems using suitable design strategies such as the greedy method, divide and conquer, dynamic programming, backtracking and branch & bound. This course helps to understand the impact of the choice of data structures and algorithm design strategies on the performance. This course also provides the understanding of advanced graph applications and throws light on tractable and intractable problems.

MODULE-1

UNIT-1

INTRODUCTION

Algorithm, Pseudo-code for expressing algorithms, Performance analysis – space and time complexity; Asymptotic notation - big oh notation, Omega notation, Theta notation and little oh notation; Analysis of recursive algorithms through recurrence relations- substitution method, Recursion tree method, Masters Theorem.

Disjoint sets: Disjoint set operations, Union and find algorithms.

UNIT-2

10L+10T+10P=30 Hours

6L+6T+6P=18 Hours

DIVIDE & CONQUER AND GREEDY METHOD

Divide and Conquer: General method, Applications - Binary search, Quick sort, Merge sort and Strassen's matrix multiplication.

Greedy Method: Applications - job sequencing with deadlines, Knapsack problem, Minimum cost spanning trees.

PRACTICES:

• Sort a given set of elements using the following methods and determine the time required to sort the elements. Repeat the experiment for different values of n, the number of elements in the list to be sorted and plot a graph of the time taken versus n inputs. The elements can be read from a file or can be generated using the random number generator.

a. Quick sort b. Merge sort

- Search for a given set of elements using the following methods and determine the time required to search the given element. Repeat the experiment for different values of n, the number of elements in the list to be sorted and plot a graph of the time taken versus no. of elements. The elements can be read from a file or can be generated using the random number generator.
 a. Linear Search b. Binary Search
- Implement the following using divide and conquer approach.
 - To multiply two given square matrices.
 - To multiply two given square matrices using Strassen's matrix multiplication.
- Design the Algorithm to solve Job sequencing with deadlines problem and Analyze its time complexity. Implement the above algorithm using Greedy method.
- Design the Algorithm to solve fractional Knapsack problem using Greedy method. Analyze the time complexity and implement the above algorithm.
- Design the Algorithm to find minimum spanning tree and its cost for an undirected graph. Analyze the time complexity and implement the above algorithm.

MODULE-2

UNIT-1

10L+10T+10P=30 Hours

DYNAMIC PROGRAMMING AND BACKTRACKING

Dynamic Programming: General method, Applications - optimal binary search trees, Matrix chain multiplication, 0/1knapsackproblem, All pairs shortest path problem, Travelling sales person problem.

Backtracking: General method, Applications - N-Queen problem, Sum of subsets problem, Graph colouring and Hamiltonian cycles.

UNIT-2

6L+6T+6P=18 Hours

BRANCH & BOUND AND P, NP, NP - HARD AND NP-COMPLETE

Branch and Bound: General method, Applications- Travelling sales person problem, 0/1 knapsack problem using LC branch and bound solution and FIFO branch and bound solution.

P, NP, NP - HARD and NP-Complete: Basic Concepts - Non-Deterministic Algorithms - The Classes NP-Hard and NP Complete- NP Hard Problems- Clique Decision Problem-Cook's Theorem.

PRACTICES:

- Design the Algorithm to find all pairs shortest path problem by using dynamic programming approach. Analyze its time complexity and implement the above algorithm.
- Design the Algorithm to find optimal binary search tree and its cost by using dynamic programming approach. Analyze its time complexity and implement the above algorithm.
- Design the Algorithm to find optimal order of matrix chain multiplication and its cost using dynamic programming approach. Analyze its time complexity and implement the above algorithm.
- Design the Algorithm to find optimal route for travelling sales person problem and its cost by using dynamic Programming approach. Analyze its time complexity and implement the above algorithm.
- Design the Algorithm to solve N-queens problem by using backtracking approach and Analyze its time complexity. Implement the above algorithm.
- Design the Algorithm to solve sum of subsets problem using backtracking approach and Analyze its time complexity. Implement the above algorithm.
- Design the Algorithm to solve 0/1 Knapsack problem using Branch and Bound method. Analyze the time complexity and Implement the above algorithm.

SKILLS:

- Analyze the given algorithm concerning space and time complexities and compare it with other algorithms.
- Develop algorithms for solving problems using divide and conquer, greedy, dynamic programming, backtracking and branch & bound techniques.
- > Application of existing design strategies to solve real-world problems.

COURSE OUTCOMES:

Upon successful completion of this course, students will have the ability to:

CO No.	Course Outcomes	Blooms Level	Module No.	Mapping with POs
1	Analyze the efficiency of a given algorithm using time and space complexity theory. Understanding algorithmic design strategy like divide and conquer approach.	Analyze	1	1, 2, 12
2	Apply greedy algorithm Strategy for suit able problems and argue the correctness of such algorithms with respect to the global optimization.	Apply	1	1, 2,3, 5, 12
3	Apply the dynamic programming paradigm and identify the kind of problem best suited to solve using dynamic programming.	Apply	2	1, 2, 3, 5, 12
4	Compare and contrast the design principles of branch and bound with backtracking strategy.	Apply	2	1, 2,3,5, 12
5	Investigate computational complexity of different class of problems.	Analyze	2	1, 2, 4, 12

TEXT BOOKS:

- 1. Ellis Horowitz, SatrajSahni and Rajasekharan, "Fundamentals of Computer Algorithms", 2nd Edition, Galgotia publications, 2006.
- 2. Thomas H. Coremen, Charles E. Leiserson and Ronald L. Rivest, "Introduction to Algorithm", 2nd Edition, MIT press Ltd., 2014.

REFERENCE BOOKS:

- 1. Anony Levitin, "Introduction to Design and Analysis of Algorithms", 3rd Edition, Pearson Education, 2016.
- 2. Donald E. Knuth, "The Art of Computer Programming", 2nd Edition, Addison Wesley Publishing Company, 1998.
- 3. Ronald L. Graham, Donald E. Knuth and Oren Patashnik, "Concrete Mathematics", 2nd Edition, Addison wesley Publishing Company,1998.
- 4. Dasgupta, Papadimitriou and Vazirani, "Algorithms", 1st Edition, McGraw-Hill publishers, 2008.
- 5. Weiss, "Data Structures and Algorithm Analysis", 1st Edition, Addison-Wesley Publishing Company, 2016.

https://www.facebook.com/Design-and-Analysis-of-Algorithms-1553902878155564/

III	Year	II Semester
-----	------	--------------------

Sl. No.	Course Code	Course Title	L	Т	Р	С
1	22TP302	Quantitative Aptitude and Logical Reasoning	1	2	0	2
2	22XXXX	IoT Architecture and Protocols	3	0	2	4
3	22CS301	Introduction to Artificial Intelligence	2	0	2	3
4	22CS307	Software Engineering	2	0	2	3
5	22XXXX	Inter-Disciplinary Project – Phase II	0	0	2	2
6	22XXXX	Department Elective – 2	3	0	2	4
7		Open Elective – 3	3	0	0	3
		Total	14	2	10	21
8		Minor / Honors – 3	3	0	2	4
		Total	17	2	12	25
		Total		31		25

22TP302–QUANTITATIVE APTITUDE AND LOGICAL REASONING

Hours per week:

L	Т	Р	С
1	2	0	2

PREREQUISITE KNOWLEDGE: Basic Logical Thinking and Problem Solving Ability.

COURSE DESCRIPTION AND OBJECTIVES:

The Students will be introduced to various Arithmetic and Reasoning Problems. The students will have acquaintance with various problems like Time & Work, Time & distance, Percentages, Profit & Loss etc. besides solving puzzles and Critical Reasoning.

MODULE-1

4L+8T+0P=12 Hours

Number system, LCM & HCF of numbers, Percentage, Ratio and proportion, Profit, loss and discount, Average & Mixtures, Simple Interest & Compound interest.

UNIT-2

UNIT-1

4L+8T+0P=12 Hours

Time and work, Time & distance, Problems on trains, Problems on ages, Permutation & Combinations, Probability.

PRACTICES:

- Each concept would be taught in detail in the class followed by 10 problems solved in the class.
- Students would have to solve 10 additional problems as a homework assignment in each concept.

MODULE-2

4L+8T+0P=12 Hours

4L+8T+0P=12 Hours

Number series, Letter series, Analogy, Odd man out, Coding and decoding, Syllogisms- Statement & Conclusions, Puzzle test.

UNIT-2

Blood relations, Direction sense test, Order & Ranking, Seating Arrangements, Calendar & Clocks.

PRACTICES:

Each concept would be taught in detail in the class followed by 10 problems solved in the class. Students would have to solve 10 additional problems as homework assignments in each concept.

UNIT-1

SKILLS:

- > Helps in developing and improving problem-solving skills.
- Flexing and honing logical abilities.
- > Allow students to develop critical thinking skills.

COURSE OUTCOMES:

Upon successful completion of the course, students will have the ability to:

CO No.	Course Outcomes	Blooms Level	Module No.	Mapping with POs
1	Meet the demands of current job market besides equipping them higher studies like CAT, GMAT etc.	Apply	1	2, 5
2	Solve Arithmetic and Reasoning Problems within shortest possible time without paperwork.	Apply	1	2, 5
3	Exhibit better analytical skills and aptitude skills.	Analyse	2	2, 4
4	Develop interpretational skills.	Evaluation	2	2, 4

TEXT BOOKS:

- 1. R. S. Aggarwal, "Quantitative Aptitude for Competitive Examinations", S. CHAND Publications-Revised Edition, 2017.
- 2. ARIHANT, "A New Approach to Verbal & Non-Verbal Reasoning", Arihant Publication- Revised Edition, 2021.

REFERENCE BOOKS:

- 1. Trishna Knowledge Systems, "Quantitative Aptitude for Competitive Examinations", Pearson Publication, 2013.
- 2. R. S. Aggarwal, "A Modern Approach to Verbal & Non-Verbal Reasoning", Revised Edition, S. CHAND Publications, 2018.

Image: https://images.app.goo.gl/kvtVgA8TkvDCqLhj7

22CSXXX – IoT ARCHITECTURE AND PROTOCOLS

Hours per week:

L	Т	Р	С
3	0	2	4

PREREQUISITE KNOWLEDGE:

COURSE DESCRIPTION AND OBJECTIVES:

MODULE-1

UNIT-1: IoT Reference Models

Introduction: Introduction to IoT, Applications of IoT, Use cases of IoT, The IoT Architectural Reference Model as Enabler,

IoT in Practice: Examples: IoT in Logistics and Health, IoT Reference Model: Domain, information, functional & communication models.

UNIT-2: IoT Architecture and Protocols

IoT Reference Architecture: Architecture, Functional, information, deployment and operation views; SOA based Architecture, API-based Architecture, OPENIoT Architecture for IoT/Cloud Convergence. Application Protocols for IoT: UPnP, CoAP, MQTT, XMPP. SCADA, WebSocket; IP-based protocols:

6LoWPAN, RPL; Authentication Protocols; IEEE 802.15.4, LoRa

Case study: Cloud-Based Smart-Facilities Management, Healthcare, Environment Monitoring System.

PRACTICES:

- Implementation of home automation system using relay module.
- Implementation of traffic signal control using 6LoWPAN.
- Implementation of railway gate control by stepper motors.
- Direction and speed control of DC Motor.
- Familiarization with Arduino/Raspberry pi .
- To interface LED/Buzzer with Arduino/Raspberry Pi and write a program to turn on led for 1sec after every 2 seconds.
- Write a program on Arduino/Raspberry Pi to publish temperature data to the MQTT broker.
- Write a program on Arduino/Raspberry Pi to subscribe to the MQTT broker for temperature data and print it.

MODULE-2

UNIT-I:

IIOT REFERENCE ARCHITECTURE

HoT ARCHITECTURE: The IIC Internet Reference Architecture, Industrial Internet Architecture Framework (IIAF), Architectural Topology, The Three-Tier Topology, Connectivity, Key System Characteristics, Data Management.

UNIT-II:

DESIGNING INDUSTRIAL INTERNET SYSTEMS -

The Concept of the IIoT, The Proximity Network, WSN Edge Node, Legacy Industrial Protocols, Modern Communication Protocols, Wireless Communication Technologies, Proximity Network Communication Protocols, Gateways Examining the Access Network Technology and Protocols - The Access Network, Access Networks Connecting Remote Edge Networks

PRACTICES:

- Identify the industrial Sensors
- Interfacing raspberry pi with Boilers
- Implementation of scrolling belt using raspberry pi.
- implementation of the network using raspberry pi.
- To interface Bluetooth with Arduino/Raspberry Pi and write a program to send sensor data to the smartphone using Bluetooth.
- To interface node MCU with Arduino/Raspberry Pi and write a program to send sensor data to the smartphone using Blynk Application/Cloud.

Skills:

- > Understand the specifications and how well different components work together for IoT Boards.
- > Learn different data and number representations.
- Design ALU and Control unit.
- > Identify the types of IoT application protocols and their uses.
- > To enable the students to take up the real-time industry as well as interdisciplinary projects.

Activities:

- Model the architectural components of IoT.
- > Implementing the Home Automation, Industrial air pollution system etc...
- > Identify the Performance of different protocols.
- > IoT implementation to make smart factories.
- IoT Processing & Process Control.

TEXT BOOKS:

- 1. Giacomo Veneri; Antonio Capasso, "Hands-on Industrial Internet of Things : create a powerful Industrial IoT infrastructure using Industry 4.0", ,Packt Publishing, 2018
- 2. Vijay Madisetti, ArshdeepBahga," Internet of Things A Hands-On- Approach", 2014

REFERENCE BOOKS:

- 1. Bassi, Alessandro, et al, "Enabling things to talk", Springer-Verlag Berlin An, 2016.
- David Hanes, Gonzalo Salgueiro, Patrick Grossetete, Robert Barton, Jerome Henry, "IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet of Things", CISCO Press, 2017
- 3. Hersent, Olivier, David Boswarthick, and Omar Elloumi. The internet of things: Key applications and protocols. John Wiley & Sons, 2011.
- 4. Buyya, Rajkumar, and Amir Vahid Dastjerdi, eds. Internet of Things: Principles and paradigms. Elsevier, 2016
- 5. Alasdair Gilchrist, "Industry 4.0: The Industrial Internet of Things" by, ISBN: 978-1-4842-2046-7, APRESS, 2016.
- 6. Francis daCosta, "Rethinking the Internet of Things: A Scalable Approach to ConnectingEverything", 1 st Edition, Apress Publications, 2013

22CS301–INTRODUCTION TO ARTIFICIAL INTELLIGENCE

Hours per week:

6L + 6T + 0P = 12 hours

10L + 10T + 0P = 20 hours

L	Т	Р	С
2	2	0	3

PREREQUISITE KNOWLEDGE: Probability & statistics.

COURSE DESCRIPTION AND OBJECTIVES:

The primary objective of this course is to introduce the basic principles, techniques, and applications of Artificial Intelligence. In addition to this, student will understand the building blocks of AI such as search, knowledge representation, inference, logic and learning. This course enables the students to develop a small AI system for real time problems.

MODULE-1

UNIT-1

INTELLIGENT SYSTEMS

Introduction, what is AI, Examples of AI systems, Brief history of AI Agent, Agents and environments, Structure of agents, the concept of rationality, the nature of environments, Types of agents, problem solving approaches to typical AI problem.

UNIT-2

PROBLEM SOLVING

State Space Problem; Searching: Uniform search, Informed Search: Solving problems by searching: Heuristic functions, Hill climbing, Best First Search, A* algorithm, AO* algorithm, Searching game trees: Min Max Search, Alpha Beta pruning.

PRACTICES:

- In the classical vacuum cleaner problem, we have two rooms and one vacuum cleaner. There is dirt in both the rooms and it is to be cleaned. The vacuum cleaner is present in any one of these rooms. Find the solution, how we can reach to reach a state in which both the rooms are clean and are dust free.
- In this problem, three missionaries and three cannibals must cross a river using a boat which can carry at most two people, under the constraint that, for both banks, that the missionaries present on the bank cannot be outnumbered by cannibals. The boat cannot cross the river by itself with no people on board. Find the solution, how to solve the given problem.
- You are given two jugs, a 4-gallon one and a 3-gallon one, a pump which has unlimited water which you can use to fill the jug, and the ground on which water may be poured. Neither jug has any measuring markings on it. Find the solution, how can you get exactly 2 gallons of water in the 4-gallon jug?

- There is a farmer who wishes to cross a river but he is not alone. He also has a goat, a wolf, and a cabbage along with him. There is only one boat available which can support the farmer and either of the goat, wolf or the cabbage. So at a time, the boat can have only two objects (farmer and one other). But the problem is, if the goat and wolf are left alone (either in the boat or onshore), the wolf will eat the goat. Similarly, if the Goat and cabbage are left alone, then goat will eat the cabbage. The farmer wants to cross the river with all three of his belongings: goat, wolf, and cabbage. What strategy he should use to do so?
- Either place a block that doesn't have other blocks stacked on top of it on another block with the same behaviour, or on the table. The initial and the goal state are described by the exact position of each block. Find the solution, how to solve the given problem.
- Given a 3×3 board with 8 tiles (every tile has one number from 1 to 8) and one empty space. The objective is to place the numbers on tiles to match the final configuration using the empty space. We can slide four adjacent (left, right, above, and below) tiles into the empty space. Find the solution, how to solve the given problem by using using A* search algorithm.
- The rules of tic-tac-toe on the 3×3 field are as follows. Before the first turn all the field cells are empty. The two players take turns placing their signs into empty cells (the first player places Xs, the second player places Os). The player who places Xs goes first, the another one goes second. Find the solution, how to solve the given problem where the winner is the player who first gets three of his signs in a row next to each other (horizontal, vertical or diagonal).
- In crypt arithmetic problem, the digits (0-9) get substituted by some possible alphabets or symbols. The task in crypt arithmetic problem is to substitute each digit with an alphabet to get the result arithmetically correct. Find the solution, how to solve the given problem, where we can perform all the arithmetic operations on a given crypt arithmetic problem.

MODULE-2

10L+10T+0P=20 hours

KNOWLEDGE REPRESENTATION&PLANNING

Propositional logic: Inference in propositional logic, Resolution, Forward chaining, Backward chaining, First order logic: Reasoning patterns in First order logic, Resolution, Forward chaining, Backward chaining, The planning problem: Planning with state space search, Partial order planning, Planning graphs.

UNIT-2

LEARNING

Forms of learning: Supervised Learning, Unsupervised learning, Reinforcement learning, Learning Decision Trees, Ensemble Learning, Expert system.

PRACTICES:

- With logic programming, compare expressions and find out unknown values.
- The Wumpus world is a cave with 16 rooms (4×4). Each room is connected to others through walkways (no rooms are connected diagonally). The knowledge-based agent starts from Room [1, 1]. The cave has some pits, a treasure and a beast named Wumpus. The Wumpus cannot move but eats the one who enters its room. If the agent enters the pit, it gets stuck there. The goal of the agent is to take the treasure and come out of the cave. The agent is rewarded, when the goal conditions are met. The agent is penalized, when it falls into a

UNIT-1

6L + 06T + 0P = 12 hours

pit or being eaten by the Wumpus. Some elements support the agent to explore the cave, like -The Wumpus's adjacent rooms are stench. -The agent is given one arrow which it can use to kill the Wumpus when facing it (Wumpus screams when it is killed). – The adjacent rooms of the room with pits are filled with breeze. -The treasure room is always glittery. Find the Wumpus presented room.

- you are on one side of a river with a wolf, a goat, and a cabbage. You want to transport all three to the other side of the river, but you can only transport one object at a time. You cannot leave the wolf and the goat alone, or the cabbage and the goat alone; you are the only thing keeping them from eating each other. How can you transport everything from one side of the river to the other? Formulate it in terms of a Planning Domain Definition Language (PDDL).
- Impliment the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample.
- Build an Artificial Neural Network by implementing the Back propagation algorithm and test the same using appropriate data sets.
- Implement k-nearest neighbors classification using python.
- Implement linear regression using python.
- Implement the naïve Bayesian classifier for a sample training dataset. Compute the accuracy of the classifier, considering few test data sets.

SKILLS:

- Analyze Intelligent systems.
- > Apply problem solving techniques.
- Interface various knowledge representation.
- Create a dynamic planning.

COURSE OUTCOMES:

Upon completion of the course, the student will be able to achieve the following outcomes:

Co No.	Course Outcomes	Blooms Level	Module No	POs
1	Apply AI search Models and Generic Search strategies for problem solving.	Apply	1	1,3
2	Inspect and analyze Logic for representing Knowledge and Reasoning of Alsystems and Conduct investigation and implement project using AI learning techniques.	Analyze	1	2
3	Apply and evaluate the searching strategies to achieve the goal for a given situation	Apply	2	6

4	Design different learning algorithms for improving the performance of AI systems.	Apply	2	4	
---	---	-------	---	---	--

TEXT BOOK:

1. S. Russel and P. Norvig, "Artificial Intelligence – A Modern Approach", 4th Edition, Pearson Education, 2010.

REFERENCE BOOKS:

- 1. David Poole, Alan Mackworth, Randy Goebel, "Computational Intelligence : a logical approach", Oxford University Press, 2013.
- 2. G. Luger, "Artificial Intelligence: Structures and Strategies for complex problem solving", 4th Edition, Pearson Education, 2008.
- 4. J. Nilsson, "Artificial Intelligence: A new Synthesis", Elsevier Publishers. 2012.

https://www.forbes.com/sites/bernardmarr/2020/08/03/3-important-ways-artificial-intelligence-will-transform-your-business-and-turbocharge-success/

22CS307–SOFTWARE ENGINEERING

PREREQUISITEKNOWLEDGE: Data Base Management Systems, Oops through

Java.

COURSEDESCRIPTIONANDOBJECTIVES:

This course focuses on the concepts of software life cycle, role of process models and methods to prepare software requirement specification document. In addition to that, it also imparts knowledge of design, development and testing of software. The objective of this course is to enable the student to develop efficient, cost effective, feasible software as per user requirements.

MODULE - 1

UNIT-1

INTRODUCTION

INTRODUCTION TO SOFTWARE ENGINEERING: Introduction to Software and Software engineering, Software characteristics, Software project, Software myths, Project Planning, Scheduling and Management.

GENERIC VIEW OF PROCESS: Software Engineering - A layered technology, A process framework, Software Development Life Cycle (SDLC), The Capability Maturity Model Integration (CMMI).

Process Models: Conventional Model, Agile process models - Unified process model, Extreme Programming, Scrum.

UNIT-2

8L+0T+8P=16 hours

8L+0T+8P=16 hours

REQUIREMENTS ENGINEERING

REQUIREMENTS ENGINEERING: Functional and Non-functional requirements, User requirements, System requirements, Requirement engineering tasks, formal requirements specification and verification, Feasibility Study.

Building the Analysis Model: Data modeling - Data objects, Attributes, Relationships, Cardinality and modality. Class based modeling - Identify analysis classes, specify attributes and Define operations.

Design Engineering: Design model, Design concepts. Creating an Architectural Design-Architectural styles and patterns.

PERFORMING USER INTERFACE DESIGN: Golden rules; User interface analysis and design.

Hours per week:

L Т Р С

2 0 2 3

PRACTICES:

Laboratory session of this course is designed in such a way that the student should complete three projects of the given type by performing the below experiments.

- Development of software requirements specification using Mind-Map tool.
- Project planning using Gantt charts.
- Project estimation using metrics.
- Capture Use Case Scenarios and model UML Use Case Diagrams.
- Model the UML state chart and Activity diagrams.
- Model the UML Class and Sequence diagrams.

MODULE - 2

8L+0T+8P=16 hours

UNIT-1

TESTING

Testing Strategies: A strategic approach to software testing, Unit testing, Integration testing, Validation testing, System testing,

Testing Tactics: Black-Box and White-Box testing techniques, Art of debugging.

Product Metrics: Metrics for analysis model; Metrics for design model, Metrics for source code; Metrics for testing; Metrics for maintenance.

UNIT-2

8L+0T+8P=16 hours

RISK AND QUALITY MANAGEMENT

Risk Management: Software risks, Risk identification; Risk projection; Risk refinement, Reactive vs Proactive risk strategies, RMMM.

Quality Management: Quality concepts, Formal technical reviews, Statistical Software Quality Assurance.

Computer-Aided Software Engineering (CASE): Use of appropriate CASE tools- Requirement engineering tools, Project planning tools, Testing tools.

PRACTICES:

Laboratory session of this course is designed in such a way that the student should complete three projects of the given type by performing the below experiments.

- Estimate the test coverage and Structural complexity of product using metrics.
- Develop the test cases for all the functional requirements of projects selected.
- Perform the functional testing using Selenium tool.

LIST OF PROJECTS:

Project-1: A Point-Of-Sale (PoS) System: A POS system is a computerized application used to record sales and handle payments; it is typically used in a retail store, it includes hardware components such as a computer and bar code scanner, and software to run the system. It interfaces to various service applications, such as a third-party tax calculator and inventory control. These systems must be relatively fault tolerant; that is, even if remote services are temporarily unavailable they must still be of capturing sales and handling at least cash payments. A POS system must support multiple and varied client-side terminals and interfaces such as browser, PDAs, touch-screens.

Project-2: Online Bookshop Example: Following the model of amazon.com or bn.com, design and implement an online bookstore.

Project-3: A Simulated Company: Simulate a small manufacturing company. The resulting application will enable the user to take out a loan, purchase a machine, and over a series of monthly production runs, follow the performance of their company.

Project-4: A Multi-Threaded Airport Simulation: Simulate the operations in an airport. Your application should support multiple aircrafts using several runways and gates avoiding collisions/ conflicts. Landing: an aircraft uses the runway, lands, and then taxis over to the terminal. Take-Off: an aircraft taxies to the runway and then takes off.

Project-5: An Automated Community Portal: Business in the 21st Century is above all BUSY. Distractions are everywhere. The current crop of "enterprise intranet portals" is often high noise and low value, despite the large capital expenditures it takes to stand them up. Email takes up 30 - 70% of an employee's time. Chat and Instant Messaging are either in the enterprise or just around the corner. Meanwhile, management is tasked with unforeseen and unfunded leadership and change-agent roles as well as leadership development and succession management. What is needed is a simplified, repeatable process that enhances communications within an enterprise, while allowing management and peers to self-select future leaders and easily recognize high performance team members in a dynamic way. Additionally, the system should function as a general-purpose content management, business intelligence and peer-review application. Glasscode's goal is to build that system.

Project-6: Content Management System: The goal is to enable non-technical end users to easily publish, access, and share information over the web, while giving administrators and managers complete control over the presentation, style, security, and permissions. Features: Robust Permissions System, Templates for easy custom site designs, Total control over the content, Search engine friendly URL's, Role based publishing system, Versioning control, Visitor profiling.

Project-7: An Auction Application: Several commerce models exist and are the basis for several companies like eBay.com, pricellne.com etc. Design and implement an auction application that provides auctioning services. It should clearly model the various auctioneers, the bidding process, auctioning etc.

Project-8: A Notes And File Management System: During one's student years and professional career one produces a 1 lot of personal notes, documents. All these documents are usually kept 1 on papers or individual files on the computer. Either way the bulk of the information is often erased corrupted and eventually lost.

The goal of this 1 project is to build a distrib- VFSTR 106 III Year I Semester uted software application that addresses this problem. The system will provide an interface to create, organize and manage personal notes through the Internet for multiple users. The system will also allow users to collaborate by assigning permissions for multiple users to view and edit notes.

Project-9: Library Management System(LMS): The goal is to enable students and librarians to easily access and manage the library and run it smoothly. Each physical library item - book, tape cassette, CD, DVD, etc. could have its own item number. To support it, the items may be barcoded. The purpose of barcoding is to provide a unique and scannable identifier that links the barcoded physical item to the electronic record in the catalog. Barcode must be physically attached to the item, and barcode number is entered into the corresponding field in the electronic item record. Barcodes on library items could be replaced by RFID tags. The RFID tag can contain item's identifier, title, material type, etc. It is read by an RFID reader, without the need to open a book cover or CD/DVD case to scan it with barcode reader.

Project-10: Hospital Management System: Simulate to show and explain hospital structure, staff, and relationships with patients, and patient treatment terminology

Project-11: Draft Software Requirement Analysis for the following Problem Statement: Fuel Delivery System: An unattended petrol (gas) pump system that includes a credit card reader. The customer swipes the card through the reader and then specifies the amount of fuel required. The fuel is delivered, and the customer's account debited.

SKILLS:

- > Know the software requirements and find out various ways to gather and specify them.
- Choose a process model for developing software solutions without schedule/ effort overruns and good quality.
- > Analyse and model (diagrammatical representations) a software product.

COURSE OUTCOMES

COs	Course Outcomes	Blooms Level	Module	POs
		Lever	No	
1	Use basic concepts of software engineering for designing software product	Usage	1	1, 11
2	Compare different process models and identify appropriate process model based on project requirements	Evaluation	1	2, 4
3	Build Software Requirement Specification (SRS) document for any software product	Design	1	3, 5
4	Design of solutions using UML diagrams like Use case, Sequence diagrams etc	Design	1	3, 4, 5
5	Create an appropriate architecture for a given project that meets all quality constraints	Create	2	5
6	Apply different testing techniques to ensure bug free software and metrics to measure the software size, complexity, and budget etc	Apply	2	4, 5, 11

TEXT BOOKS:

- 1. Roger S. Pressman, "Software Engineering, A practitioner's Approach", 6th Edition, McGrawHill International Edition, 2008.
- 2. Booch G., Rumbaugh J. and Jacobsons I, "The Unified Modeling Language User Guide", 2nd Edition, Addison Wesley, 2005.

REFERENCE BOOKS:

- 1. Simon Sennet, Steve McRobb and Ray Farmer, "Object Oriented Systems Analysis and Design, 2nd edition, 2004.
- 2. Dr. Pankaj Jalote "Software Engineering: A Precise Approach" -edition 2010

https://artoftesting.com/software-engineering

IV Year I Semeste	r
-------------------	---

Sl. No.	Course Code	Course Title			Р	C
1	22CS401	Cryptography and Network Security	3	0	2	4
2	22AM204	Machine Learning	3	0	2	4
3	22XXXX	Cloud and Fog Computing for IoT		0	2	4
4		Department Elective – 3		0	2	4
5		Department Elective – 4		0	2	4
		Total	15	0	10	20
6		Minor / Honors – 4	3	0	2	4
		Total	18	0	12	24
		Total		30		24

IV Year II Semester

Sl. No.	Course Code	Course Title	L	Т	Р	C
1	22CS404	Project Work	0	2	22	12
		Total	0	2	22	12
2		Minor / Honors – 5 (for project)	0	2	6	4
		Total	0	4	28	16
		Total		32		16

22CS401–CRYPTOGRAPHY AND NETWORK SECURITY

Hours per week:

L	Т	Р	С
3	0	2	4

PREREQUISITE KNOWLEDGE: Computer Networks

COURSE DESCRIPTION AND OBJECTIVES:

This course focuses on the modern concepts of network security using various cryptographic algorithms and underlying network security applications. It enables to understand various symmetric and asymmetric cryptographic techniques. It focuses on security implementation in practical applications such as e-mail functioning, web security and secure electronic transactions protocol and system security.

MODULE-1

UNIT-1

INTRODUCTION

INTRODUCTION TO COMPUTER AND NETWORK SECURITY CONCEPTS: Computer Security Concepts, Security attacks, Security services, Security mechanisms, Fundamental Security Design Principles, Attack Surfaces and Attack trees, A model for network security.

CLASSICAL ENCRYPTION TECHNIQUES: Symmetric cipher model, Substitution techniques, Transposition techniques

UNIT-2

12L+0T+8P=20 Hours

12L+0T+8P = 20 Hours

SYMMETRIC AND ASYMMETRIC CRYPTOGRAPHY

SYMMETRIC CIPHERS: Block cipher principles, Data encryption standard, Strength of DES, Blockcipher design principles, AES cipher, Multiple encryption and triple DES, Block cipher modes of operation, RC4.

ASYMMETRIC CIPHERS AND CRYPTOGRAPHIC HASH FUNCTIONS: Principles of public keycryptosystems, RSA algorithm, Diffie-Hellman Key Exchange, Message Authentication requirements, Authentication functions, Message authentication Codes, Hash functions, Security of hash functionsand MACs, Digital signature standard.

PRACTICES:

- Implement Substitution and Transposition Ciphers
 - Ceaser cipher
 - Playfair cipher
 - Hill cipher
 - Rail fence cipher
- Implement Symmetric Cipher
 - S-DES
 - o RC4
- Implement Asymmetric Cipher
 - o RSA
 - o Diffie-Hellman
 - Hash Function

MODULE-2

UNIT-1

12L+0T+8P = 20 Hours

SECURITY APPLICATIONS

Network Security Applications: Kerberos, X.509 authentication service, Public key infrastructure,

E-Mail Security: Pretty good privacy, S/MIME.

IP Security Overview: IP security architecture, Authentication header, Encapsulating security payload, Combining security associations, key management.

UNIT-2

12L+0T+8P = 20 Hours

WEB AND SYSTEM SECURITY

Web Security: Secure socket layer and transport layer security, HTTPS, Secure Shell (SSH).

System Security: Intruders, Intrusion detection, Malicious software, Firewalls

PRACTICES:

- Configure IP Address in a system in LAN (TCP/IP Configuration)
- Configure DNS to establish interconnection between systems
- Configuring Windows Firewall
- Adding users, setting permissions
- Configure Mail server
- Demonstrate the usage of Wireshark to identify abnormal activity in network communication.
- Demonstrate usage of NMAP (Zenmap) Tool in Network Scanning.

SKILLS:

- Design various security services for appropriate applications
- Identifying the appropriate firewall, password management and anti-virus models for specific applications
- > Test and resolve threats and malfunctions in network
- > Apply different security mechanisms for web applications.
- > Build authentication system for security protocols.

COURSE OUTCOMES:

Upon successful completion of this course, student's willhave the ability to:

CO No.	Course Outcomes	Blooms Level	Module No.	Mapping with PO's
1	Apply cryptographic techniques in various security service solutions effectively in everyday professional and social contexts.	Apply	1,2	1,2
2	Analyze the usage of secure protocols to safeguard sensitive data using internet.	Analyze	1,2	1,2
3	Usage of tools to Identify abnormal activity in network communication to take appropriate action.	Apply	2	5
4	Apply various security protocols to safe guard the data internet using SSL/TCL.	Apply	2	1,2

TEXT BOOK:

1. William Stallings, "Cryptography and Network security", 7th Edition, Pearson Education, 2017.

REFERENCE BOOKS:

- 1. William Stallings "Network Security Essentials Applications and Standards", 2nd Edition, Pearson Education, 2009.
- 2. Eric Malwald, "Fundamentals of Network Security", 4th Edition, Pearson Education, 2010.
- 3. Buchmann, "Introduction to Cryptography", 2nd Edition, Pearson Education, 2009.
- 4. Charlie Kaufman, "Radis Perlman and Mike Speciner, Network Security Private Communication in a Public World", 1st Edition, Pearson Education, 2009.

https://www.brainkart.com/subject/CRYPTOGRAPHY-AND-NETWORK-SECURITY-PRINCIPLES-AND-PRACTICE_136/

22AM204–MACHINE LEARNING

Hours per week:

L	Т	Р	С
3	0	2	4

PREREQUISITE KNOWLEDGE: Probability & Linear Algebra, Python language.

COURSE DESCRIPTION AND OBJECTIVES:

This course provides a broad introduction to various machine learning concepts including Supervised learning (parametric/non-parametric algorithms, support vector machines, kernels, neural networks) and Unsupervised learning (clustering, dimensionality reduction) methods. Students will get an understanding of various challenges of Machine Learning and will be able to decide on model complexity. Numerous case studies introduced in this course allow the students to apply machine-learning algorithms in computer vision, medical imaging, audio, and text domains. Laboratory experiments of this course will introduce students to advanced Machine Learning Python libraries such as Scikit-Learn, Matplotlib, and many other recent ML-related APIs. The course is designed such that the students get enough hands-on experience with a major focus on the practical implementation of theoretical concepts.

MODULE-1

UNIT-1

INTRODUCTION

What is machine learning? Machine learning applications; Types of Learning: Supervised learning; Unsupervised learning; Reinforcement learning.

MODEL TRAINING ESSENTIALS: Re-sampling methods: Bias–Variance Trade-off. Hypothesis Testing and Variable Selection, Sub sampling and Upsampling, SMOTE; Cross Validation (validation set, Leave-One-Cut (LOO), k-fold strategies) and bootstrap; Evaluation measures-Error functions, Confusion Matrix, Accuracy, Precision and Recall, F1 Score.

Regression Analysis: Linear Regression, Simple and Multiple Linear Regression, Polynomial Regression, Logistic Regression, Multi nominal Regression. Ordinary Least Squares Method, Model Shrinkage-Ridge, and LASSO regression.

UNIT-2

10L+0T+8P=18 hours

FEATURE SELECTION

FEATURE SELECTION STRATEGIES: Problem statement and Uses, Filter methods, Wrapper methods, Embedded methods. Branch and bound algorithm, Sequential forward/backward selection algorithms.

Dimensionality Reduction: Singular value decomposition, matrix factorization, Linear discriminant analysis, Principal components analysis.

PRACTICES:

- Apply the following tasks to any given dataset:
 - a. Load and visualize data.
 - b. Check out and replace missing values.
 - c. Encode the Categorical data.

14L+0T+8P=22 Hours

- d. Splitting the dataset into Training and Test set.
- e. Splitting the dataset into k-folds.
- f. Feature scaling.
- House price prediction:

a. Create a model that predicts a continuous value (price) from input features (square footage, number of bedrooms and bathrooms).

- b. Implement a univariate Model using Least Squares and plot best-fit line.
- c. Implement a multivariate Model using Least Squares and plot best-fit line.
- d. Retrieve model error and model coefficients.
- e. Observe Variance Inflation Factor (VIF).
- f. Implement Ridge regression model.
- g. Implement LASSO regression model.
- h. Report your observations on the above models for house prediction.
- Heart disease prediction:

a. Implement a logistic regression model to predict whether an individual is suffering from heart disease or not.

b. Evaluate and compare model performance using the following validation approaches:

- i. Validation set approach.
- ii. K-fold cross validation.
- iii. Stratified K-fold cross validation.
- iv. LOO strategy.
- c. Plot Confusion matrix.
- d. Report performance of the model in terms of the following metrics:
 - i. Accuracy.
 - ii. Precision-Recall.
 - iii. F1 Score.
- e. Report your observations and explain when to use what type of measures.
- Implement the Polynomial Regression algorithm to fit data points. Select the appropriate data set for your experiment and draw graphs.
- Working with imbalanced datasets:
 - a. Load an imbalanced dataset and visualize imbalance in the data as a bar plot.
 - b. Implement KNN model for classification.
 - c. Balance the dataset using:
 - i. Random Over sampling.
 - ii. Random Under sampling.
 - iii. SMOTE.
 - d. Implement KNN model for classifying data balanced in the above steps.

e. Report your observations on the performance of models trained using balanced and imbalanced data.

- Perform effective feature selection in a given dataset using any one of the feature selection techniques.
- Dimension Reduction:
 - a. Load a dataset and Implement Bayes classification model.
 - b. Apply dimension reduction using:
 - i. Principal Component Analysis
 - ii. Linear Discriminant Analysis
 - c. Apply the model on data with reduced dimension.
 - d. Compare and contrast model performance in each case.

MODULE-2

UNIT-1

16L+0T+8P=24 hours

CLASSIFICATION

Classification: Binary, Multi-class and Multi-label Classification; K-Nearest Neighbours, Support Vector Machines, Decision Trees, The Naïve Bayes' Classifier, Class Imbalance, Perceptron ANN model.

Ensemble Methods: Ensemble Learning Model Combination Schemes, Voting, Error-Correcting Output Codes, Bagging: Random Forest Trees, Boosting: Adaboost, Stacking.

UNIT-2

8L+0T+8P=16 hours

CLUSTERING

Clustering: Different distance functions and similarity measures, K-means clustering, Medoids, Hierarchical Clustering-Single linkage and Complete linkage clustering, Graph based Clustering -MST, DBSCAN, Spectral clustering.

PRACTICES:

- Implement and demonstrate the FIND-S algorithm for finding the most specific hypothesis based on a given set of training data samples. Read the training data from a .CSV file.
- Implement the naïve Bayesian classifier for a sample training data set stored as a.csv file. Compute the accuracy of the classifier, considering few test data sets.
- Assuming a set of spam or not-spam mails that need to be classified, use the naïve Bayesian classifier model to perform this task. Calculate the accuracy, precision, and recall for your data set.
- Implement k-Nearest Neighbor algorithm to classify the iris data set. Print both correct and wrong predictions. Python ML library classes can be used for this problem.
- Demonstrate the working of the decision tree-based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample?
- Build a model using SVM with different kernels.
- Implement and build models using the following Ensemble techniques.
 - a. Bagging.
 - b. Boosting: Adaboost, Stacking.
- Build a model to perform Clustering using K-means after applying PCA and determining the value of K using the Elbow method.
- Unsupervised Modeling:
 - a. Cluster the data using the following models:
 - i. Spectral Clustering. ii. K-medoids. iii. DBSCAN. iv. Hierarchical Clustering. b. Compare and contrast model performance in each case.

SKILLS:

- Statistical data analysis.
- > Classify / Cluster data.

> Tool usage for developing ML applications.

COURSE OUTCOMES:

Upon successful completion of this course, students will have the ability to:

CO No.	Course Outcomes	Blooms Level	Module No.	Mapping with POs
1	Apply a wide variety of learning algorithms such as Probabilistic, Discriminative and Generative algorithms for a given application.	Apply	1, 2	1
2	Design an end-to-end Machine-learning model to realize solutions for real-world problems.	Design	1	3
3	Implement various machine learning models using advanced ML tools.	Create	1, 2	5
4	Analyze and evaluate the performance of various machine learning models approaches on different kinds of data.	Analyze	2	2

TEXT BOOKS:

- 1. Ethem Alpaydin, "Introduction to Machine Learning", 3rd Edition, The MIT Press, 2014.
- 2. Flach, Peter. "Machine learning: the art and science of algorithms that make sense of data". Cambridge University Press, 2012.

REFERENCE BOOKS:

- 1. Murphy, Kevin P. Machine learning: a probabilistic perspective. MIT press, 2012.
- 2. Aurélien Géron, "Hands-on Machine Learning with Scikit Learn and Tensor Flow", O'reilly, 2017.

https://www.forbes.com/sites/kalevleetaru/2019/01/15/why-machine-learning-needs-semantics-not-just-statistics/

22CSXXX-CLOUD AND FOG COMPUTING FOR IOT

Hours per week:

L	Т	Р	С
3	0	2	4

PREREQUISITE KNOWLEDGE:.

COURSE DESCRIPTION AND OBJECTIVES:

UNIT-1:

Introduction ,Cloud Computing at a Glance, The Vision of Cloud Computing, Defining a Cloud, A Closer Look, Cloud Computing Reference Model, Characteristics and Benefits, Challenges Ahead, Historical Developments, Distributed Systems, Virtualization, Web 2.0, Service-Oriented Computing, Utility-Oriented Computing, Building Cloud Computing Environments, Application Development, Infrastructure and System Development, Computing Platforms and Technologies, Amazon Web Services (AWS), Google AppEngine, Microsoft Azure, Hadoop, Force.com and Salesforce.com.

UNIT II

INTRODUCTION TO FOG COMPUTING: Fog Computing, Characteristics, Application Scenarios, Issues, and challenges.

FOG COMPUTING ARCHITECTURE: Communication and Network Model, Programming Models, Fog Architecture for smart cities, healthcare, and vehicles.

FOG COMPUTING COMMUNICATION TECHNOLOGIES: Introduction ,IEEE 802.11,4G,5G standards,WPAN,Short-Range Technologies, LPWAN and other medium and Long-Range Technologies.

MODULE-2

UNIT-1:

FOG COMPUTING REQUIREMENTS FOR IOT:

Scalability, Interoperability, Fog-IoT architectural model, Challenges on IoT Stack Model via TCP/IP Architecture, Data Management, filtering, Event Management, Device Management, cloudification, virtualization, security and privacy issues.

UNIT-2:

SOFTWARE DEFINED NETWORKING AND APPLICATION IN FOG COMPUTING: Open Flow Protocol, Open Flow Switch, SDN in Fog Computing, Home Network using SDN.

SECURITY AND PRIVACY ISSUES: Trust and privacy issues in IoT Network, web Semantics and trust Management for Fog Computing, Machine Learning based security in Fog Computing, CyberPhysical Energy Systems over Fog Computing.

TEXT BOOKS

- 1. RajkumarBuyya, Christian Vecchiola, and ThamaraiSelvi Mastering Cloud. Computing McGraw Hill Education
- 2. Fog Computing: Theory and Practice by Assad Abbas, Samee U. Khan, Albert Y. Zomaya
- 3. Fog and Edge Computing: Principles and Paradigms (Wiley Series on Parallel and Distributed Computing) by RajkumarBuyya and Satish Narayana Srirama.
- 4. Amir VahidDastjerdi and RajkumarBuyya, —Fog Computing: Helping the Internet of Things Realize its Potentiall, University of Melbourne.
- 5. Sensors, Cloud, and Fog: The Enabling Technologies for the Internet of Things Paperback by SudipMisra ,Subhadeep Sarkar , Subarna Chatterjee.
- 6. FlavioBonomi, Rodolfo Milito, PreethiNatarajan and Jiang Zhu, —Fog Computing: A Platform for Internet of Things and Analyticsl, Big Data and Internet of Things: A Roadmap for Smart Environments, Studies in Computational Intelligence 546, DOI:

10.1007/978-3-319-05029-4_7, © Springer International Publishing Switzerland 2014.

REFERENCES

- FlavioBonomi, Rodolfo Milito, Jiang Zhu, SateeshAddepalli, —Fog Computing and Its Role in the Internet of Thingsl, MCC'12, August 17, 2012, Helsinki, Finland. Copyright 2012 ACM 978- 1-4503-1519-7/12/08... \$15.00.
- Shanhe Yi, Cheng Li, Qun Li, —A Survey of Fog Computing: Concepts, Applications and Issuesl, Mobidata'15, ACM 978-1-4503-3524-9/15/06, DOI: 10.1145/2757384.2757397, June 21, 2015, Hangzhou, China..
- 4. Amir M. Rahmani ,PasiLiljeberg, Preden, Axel Jantsch, —Fog Computing in the Internet of Things Intelligence at the Edgel, Springer International Publishing, 2018.
- Ivan Stojmenovic, Sheng Wen, "The Fog Computing Paradigm: Scenarios andSecurity Issues", Proceedings, Federated Conference on Computer Science and Information Systems, pp. 1–8, 2014.

Program: IoT (CSE)

Regulation: R22

Department Electives

Sl. No.	Course Code	Course Title		Т	Р	C
Odd Sem	ester					
1	22XXXX	Sensors, Actuators and Signal Processing	3	0	2	4
2	22XXXX	Dynamic Paradigm in IoT	3	0	2	4
3	22XXXX	IoT Device Programming	3	0	2	4
4	22XXXX	IoT Security	3	0	2	4
	22CS402	Big Data Analytics	3	0	2	4
6	22XXXX	Wearable Computing	3	0	2	4
7	22XXXX	Augmented Reality/ Virtual Reality	3	0	2	4
Even Sem	lester					
1	22CS811	Mobile Application Development	3	0	2	4
2	22XXXX	Data Science for Internet of Things	3	0	2	4
3	22XXXX	Descriptive Analytics for IoT	3	0	2	4
4	22XXXX	Vulnerability Assessment and Penetration Testing	3	0	2	4
5	22XXXX	Operating System for IoT	3	0	2	4

22XXXX-DYNAMIC PARADIGM IN IOT

Hours per week:

3 0 2 4

PREREQUISITE KNOWLEDGE: IOT

COURSE DESCRIPTION AND OBJECTIVES:

- To familiarize students with the basics of the IoT and design principles for connected devices.
- To elucidate students on web connectivity and Internet connectivity design principles.
- To introduce the students to Data acquiring, Data collection, and storing data in the cloud
- To familiarize students with the basic techniques of wireless sensor networks, prototyping of IoT and M2M.

MODULE-1

UNIT-1

10L+0T+6P=18 Hours

INTERNET OF THINGS: AN OVERVIEW

Internet of Things, IOT Conceptual Framework, IoT Architectural View, Technology Behind IOT, Sources of IoT, M2M Communication

Design Principles for Connected Devices

IoT/M2M Systems Layer and Design Standardisation, Communication Technologies, Data Enrichment, Data Consolidation, and Device Management at Gateway, Ease of Designing and Affordability.

UNIT-2

14L+0T+10P=24 Hours

DESIGN PRINCIPLES FOR WEB CONNECTIVITY

Introduction, Web Communication protocols for connected devices, Message Communication protocols for connected devices, Web Connectivity for Connected-Devices Networks using Gateway, SOAP, REST, HTTP, RESTful, and Websockets.

INTERNET CONNECTIVITY PRINCIPLES

Introduction, Internet Connectivity, Internet-Based Communication, IP addressing in the IoT, Media Access control, Application layer protocols – HTTP, HTTPs, FTP, Telnet and others,

PRACTICES:

- Develop a conceptual design of a waste container management service in a smart city.
- Find the ease and affordable hardware for streetlight lamppost connectivity with neighbouring lamppost. Hardware uses the sensors for ambient light, faulty lighting function and traffic, microcontroller, memory, BL LE connectivity and data adaption. When connecting to a group controller, what will be the addition hardware and software?
- Make a table giving in each row the subnet mask, class of the network address, subnet ID, subnet addresses and lsbs of host. Assume four rows have subnet masks for individual subnets = (1111 1111

MODULE-2

UNIT-1

10L+0T+6P=18 Hours

DATA ACQUIRING, ORGANISING, PROCESSING, AND ANALYTICS

Data Acquiring and Storage, Organising the Data, Transactions, Business Processes, Integration and

Enterprise Systems. Analytics, Knowledge acquiring, managing and Storing Processes

DATA COLLECTION, STORAGE, AND COMPUTING USING A CLOUD PLATFORM

Introduction, Cloud Computing Paradigm for Data Collection, Storage and Computing, everything as a Service and Cloud service models, IoT cloud-based services Using the Xively, Nimbits, and other platforms.

UNIT-2

14L+0T+10P=24 Hours

SENSORS, PARTICIPATORY SENSING, RFIDS, AND WIRELESS SENSOR NETWORKS

Sensor Technology, Participatory sensing, Industrial IoT and Automotive IoT, Actuator, Sensor data communication protocols, Radio Frequency Identification technology, Wireless sensor networks technology.

PROTOTYPING THE EMBEDDED DEVICES FOR IoT AND M2M

Embedded Computing Basics, Embedded platforms for prototyping, Things always connected to the Internet/Cloud.

PRACTICES:

- List the usages of Internet of Automatic Chocolate Vending Machines after analytics using three relational database tables. Workout the n-dimensional structure of 2-n cross-referenced tables in Internet of Automatic Chocolate Vending Machines.
- List the main cloud services from Oracle, Google, Amazon, Microsoft, Tata Communications, GoGrid and NetSuite.
- Describe the procedure for using ultrasonic sensing method for detecting railway track faults for prescriptive maintenance.
- Create a new architecture for the Internet of Traffic Control Lights. Lights are controlled as well as delay lights are synchronized according to traffic density at incoming and outgoing roads. Apply sensors and actuators with Arduino boards connected to the gateway using Wi-Fi for Internet of Streetlights applications.

SKILLS:

- ✓ *Find rank of a matrix using dif-ferent methods.*
- ✓ *Compute the eigen values and eigen vectors of a matrix.*
- ✓ *Find analytical solution of a differential equation using appropriate method.*
- ✓ Demonstrate any one numer-ical method to solve differential equation

COURSE OUTCOMES:

Upon successful completion of this course, students will have the ability to:

CO.No	Course Outcomes	Blooms Level	Module No.	Mapping with POs
1	IoT architecture, technologies, data communication gateways, prototypes, products, IETF standards, wired devices, physical layer protocols, and designs for various applications are analyzed and models and designs were created	Create	1	1, 2, 3, 10, 12
2	Web connectivity design principles and internet connectivity design principles were studied in order to inform the development of the new models.	Analyze	1	1, 2,3, 10, 12
3	Concepts related to data acquisition, organization, processing, and analytics, as well as data storage and processing in the cloud, were examined.	Analyze	2	1, 2, 3, 9, 10, 12
4	Embedded devices for the Internet of Things (IoT) and the Machine-to-Machine (M2M) were analysed, along with SENSORS, PARTICIPATORY SENSING, RFIDS, and PROTOTYPING THEM.	Create	2	1, 2, 9, 10, 12

TEXT BOOKS:

1. Raj Kamal, "INTERNET OF THINGS Architecture and Design Principles", 2nd Ed, McGraw Hill Education (India) Private Limited, 2022.

REFERENCE BOOKS:

- 1. Raj Kamal, "INTERNET OF THINGS Architecture and Design Principles", 2nd Ed, McGraw Hill Education (India) Private Limited, 2022.
- 2. Samrat, Naveen, and Angelin, "Internet of Things : Architecture and Design Principles", Notion Press, 2021.

22XXXX-IoT DEVICE PROGRAMMING

Hours per week:

L	Т	Р	С
3	0	2	4

PREREQUISITE KNOWLEDGE: Embedded Systems, Wireless Sensor Networks

COURSE DESCRIPTION AND OBJECTIVES:

Internet of Things (IoT) is presently a hot technology worldwide. Government, academia, and industry are involved in different aspects of research, implementation, and business with IoT. IoT cuts across different application domain verticals ranging from civilian to defense sectors. These domains include agriculture, space, healthcare, manufacturing, construction, water, and mining, which are presently transitioning their legacy infrastructure to support a loT. To introduce the terminology, technology and its applications, to introduce the concept of M2M (machine to machine) with necessary protocols.

- To introduce Internet of Things (IoT) environment and its technologies for designing smart systems
- To explore open-source computer hardware/software platform, development and debugging environment, programming constructs and necessary libraries
- To learn embedded programming constructs and real time systems

MODULE-1

UNIT-1

12L+0T+8P=20 hours

IOT AND EMBEDDED SYSTEMS

IoT- Introduction and Characteristics, Things, Architecture, Enabling Technologies, Challenges, Levels;

Embedded Systems- Embedded vs General Computing System, Classification, Design Challenges, MCU Architecture - 8051, PIC, ARM.

UNIT-2

12L+0T+8P=20 hours Environment

- Arduino and raspberry pi boards, IDE, shields; Programming - syntax, variables, types, operators, constructs and functions; sketch - skeleton, compile and upload, accessing pins; debugging - UART communication protocol and serial library

Interfacing with IoT Boards

Circuits - design, wiring, passive components; sensors and actuators, interfacing, read and write; software libraries to handle complicated hardware; shields, interfacing and libraries

PRACTICES:

- Demonstration and study of Raspberry Pi board/Arduino, GPIO Pins and familiarity of various sensors.
- Switching LED on/off from Raspberry Pi/ Arduino Console.

Serial and Wireless Communication with IoT boards.

MODULE-2

UNIT-1

12L+0T+8P=20 hours

INTERFACING WITH SINGLE BOARD COMPUTERS

Networking - Internet Connectivity, Standard Internet Protocols, MQTT, CoAP, Networking Socket Interface;

Cloud - Public APIs and SDK's for accessing cloud services, Twitter API using Twython package; Interfacing - sensors and actuators, Pi Camera, Servo, A/D, D/A

UNIT-2

12L+0T+8P=20 hours

Real World Projects

IoT Integrated Primary Health Care, Large Scale Face Detection by AI Powered Street Lights, Cloud IoT Systems for Smart Agriculture, Smart Home Gadgets, Autonomous Car Features – speed and horn intensity control.

PRACTICES:

- Implementation of Traffic Light System based on density, to decrease congestion.
- Design and develop IoT Solar Power Monitoring System.
- Design and develop Patient health monitoring system.
- Implementation of Home Automation System using WiFi Module
- Design and Implementation of uploading sensor data into cloud using Python.
- Design the Network Configuration and System Management with IoT devices using NETCONF-YANG and SNMP-NETCONF.

SKILLS:

- Sensor Identification and IoT system design.
- Wireless module selection and Initialization
- > Compilers and Simulation tools usage for developing IoT applications.

COURSE OUTCOMES:

Upon successful completion of this course, students will have the ability to:

CO No.	Course Outcomes	Blooms Level	Mod ule No.	Mapping with POs
1	Investigate various challenges in designing IoT devices.	Understa nd	1	1,4, 6,12
2	Use open source hardware prototyping platform for building digital devices and interactive objects that can sense and control the physical world around them	Apply	1	1,3,5,12
3	Understand basic circuits, sesors and interfacing, data conversion process and shield libraries to interface with the real world	Analyse	2	1,3,4,5,12
4	Program SBC for practical IoT devices using Python	Apply	2	1,3,5,12
5	Learn embedded programming constructs and constraints real time systems	Apply	2	1,3,5,12

TEXT BOOKS:

- 1. Yamanoor, Sai, and Srihari Yamanoor. Python Programming with Raspberry Pi, 1st edition, Packt Publishing Ltd, 2017.
- 2. Donald Norris, The Internet of Things: Do-It-Yourself Projects with Arduino, Raspberry Pi, and BeagleBone Black, 1 st edition,McGraw Hill Education, 2015

REFERENCE BOOKS:

- 1. Marco Schwartz, Home Automation with Arduino, 3rd edition, Open Home Automation 2014. Schwartz, Marco. Internet of things with arduino cookbook, 1st edition, Packt Publishing Ltd, 2016.
- 2. Kooijman, Matthijs. Building Wireless Sensor Networks Using Arduino, 1st edition, Packt Publishing Ltd, 2015

https://reddsera.com/specializations/iot/

CSXXXX– IOT SECURITY

Hours per week:

L	Т	Р	С
3	2	0	4

PREREQUISITE KNOWLEDGE: Wireless Sensor Networks, Computer Networks.

COURSE DESCRIPTION AND OBJECTIVES:

The course will introduce the advanced topics of IoT security and privacy challenges. With IoT being deployed in various applications, IoT security and privacy issues become major concerns. Upon this request, the course will systematically analyze IoT security from hardware, communication, and system perspectives. This course is designed to have students become acquainted with IoT security. Students will be able to understand or master IoT security related to hardware, system and networking. The recited topics include introduction to IoT, IoT Application - smart home, attacks against IoT, building IoT devices with Raspberry Pi, lightweight IoT communication protocol - Message Queuing Telemetry Transport (MQTT), other IoT communication protocols - HTTP, HTTPS and Websockets, introduction to Amazon AWS IoT, Secure Bootstrapping for secure IoT system, and IoT System Security and Trust Zone.

MODULE-1

UNIT-1

12L+8T+0P=20 hours

INTRODUCTION: SECURING THE INTERNET OF THINGS

Security Requirements in IoT Architecture, Security in Enabling Technologies, Security Concerns in IoT Applications. Security Architecture in the Internet of Things, Security Requirements in IoT, Insufficient Authentication/Authorization, Insecure Access Control, Threats to Access Control, Privacy, and Availability, Attacks Specific to IoT. Vulnerabilities, Secrecy and Secret, Key Capacity, Authentication/Authorization for Smart Devices, Transport Encryption, Attack and Fault trees, The secure IoT system implementation lifecycle.

UNIT-2

12L+8T+0P=20 hours

CRYPTOGRAPHIC FUNDAMENTALS FOR IOT

Cryptographic primitives and its role in IoT, Encryption and Decryption, Hashes, Digital Signatures, Random number generation, Cipher suites, Key management fundamentals, Cryptographic controls built into IoT messaging and communication protocols, IoT Node Authentication

PRACTICES:

- Identify and describe the variety of IoT systems architectures, essential components and challenges specific to IoT systems.
- Interpret information privacy and data protection requirements in regards to IoT products design.
- Apply appropriate security mechanisms for IoT to real-world problems.
- Reflect on the impact of current and future IoT technologies on security and privacy.

 Discuss appropriate security and privacy solutions for real-world applications, using appropriate language and terminology.

MODULE-2

6L+4T+0P=10 hours

IDENTITY & ACCESS MANAGEMENT SOLUTIONS FOR IOT

Identity lifecycle, Authentication credentials, IoT IAM infrastructure, Authorization with Publish/Subscribe schemes, Access control

UNIT-2

10L+8T+0P=18 hours

PRIVACY PRESERVATION FOR IOT

Privacy Preservation Data Dissemination, Privacy Preservation for IoT Used in Smart Building, Exploiting Mobility Social Features for Location Privacy Enhancement in Internet of Vehicles, Lightweight and Robust Schemes for Privacy Protection in Key Personal IoT Applications: Mobile WBSN and Participatory Sensing.

UNIT-3

8L+4T+0P=12 hours

CLOUD SECURITY FOR IOT

Cloud services and IoT, Offerings related to IoT from cloud service providers, Cloud IoT security controls, An enterprise IoT cloud security architecture, New directions in cloud enabled IoT computing

PRACTICES:

- Understanding and Mitigating Security Risks of General Messaging Protocols on IoT Clouds
- Understanding Security Risks in Cross-Cloud IoT Access Delegation
- Remote Perception Attacks against Camera-based Image Classification Systems
- Software-based Realtime Recovery from Sensor Attacks on Robotic Vehicles
- "Limiting the Attack Surface of Network IoT Devices

SKILLS:

- ≻ C,C++, JAVA, Python
- Raspberry Pi,
- ➢ IoTFy tool
- ForeScout CounterACT
- LogRhythm Netmon
- > Trustwave
- > Zingbox

UNIT-1

COURSE OUTCOMES:

CO No.	Course Outcomes	Blooms Level	Module No.	Mapping with POs
1	Understand different aspects of IoT security and privacy	Analyze	1	2,4
2	Understand attacks against IoT system (hardware +software)and attacks against IoT network protocols	Analyze	1	1,4
3	Master the HTTP, HTTPS protocol and webscokets	Apply	1	1,3
4	Understand the concept of smart home and Identify vulnerabilities in home networks	Evaluate	2	4,5
5	Understand the system security ,TrustZone hardware architecture and TrustZone software architectures	Apply	2	3

Upon successful completion of this course, students will have the ability to:

TEXT BOOKS:

- 1. Fei HU, "Security and Privacy in Internet of Things (IoTs): Models, Algorithms, and Implementations", CRC Press,2016
- 2. Lea, Perry. IoT and Edge Computing for Architects: Implementing edge and IoT systems from sensors to clouds with communication systems, analytics, and security. Packt Publishing Ltd, 2020.
- 3. Fagbemi, Damilare D., David M. Wheeler, and J. Craig Wheeler. The IoT architect's guide to attainable security and privacy. CRC Press, 2019.

REFERENCE BOOKS:

- 1. Ollie Whitehouse, "Security of Things: An Implementers' Guide to Cyber-Security for Internet of Things Devices and Beyond", NCC Group, 2014
- 2. Liyanage, Madhusanka, An Braeken, Pardeep Kumar, and Mika Ylianttila, eds. IoT security: Advances in authentication. John Wiley & Sons, 2020.
- 3. Russell, Brian and Drew Van Duren, "Practical Internet of Things Security", Packt Publishing, 2016.

https://micro.ai/blog/microai-security-iot-security-protection-at-the-endpoint

22CS402-BIG DATA AND ANALYTICS

Hours per week:

L	Т	Р	С
3	0	2	4

PREREQUISITE KNOWLEDGE: Basics of Databases, Data mining.

COURSE DESCRIPTION AND OBJECTIVES:

This course serves as an introductory course to gain knowledge on analyzing Big Data. Expecting to face Big Data storage, processing, analysis, visualization, and application issues on both workplaces and research environments. Get insight on what tools, algorithms, and platforms to use on which types of real world use cases.

MODULE-1

UNIT-1

INTRODUCTION TO BIG DATA

Data, Characteristics of data and Types of digital data, Sources of data, Working with unstructured data, Evolution and Definition of big data, Characteristics and Need of big data, Challenges of big data.

Big data analytics: Overview of business intelligence, Data science and Analytics, Meaning and Characteristics of big data analytics, Need of big data analytics, Classification of analytics, Challenges to big data analytics, Importance of big data analytics, Basic terminologies in big data environment.

UNIT-2

12L+0T+8P=20 Hours

12L+0T+8P=20 Hours

INTRODUCTION TO HADOOP

Introducing Hadoop, need of Hadoop, limitations of RDBMS, RDBMS versus Hadoop, Distributed Computing Challenges, History of Hadoop, Hadoop Overview, Use Case of Hadoop, Hadoop Distributors, HDFS (Hadoop Distributed File System), Processing Data with Hadoop, Managing Resources and Applications with Hadoop YARN (Yet another Resource Negotiator), Interacting with Hadoop Ecosystem.

PRACTICES:

- Hadoop installation in standalone machine.
- Pig installation.
- Setup of Hadoop cluster.
- HDFS basic command-line file operations.
- HDFS monitoring User Interface.

MODULE-2

MAPREDUCE PROGRAMMING

Introduction, Mapper, Reducer, Combiner, Partitioner, Searching, Sorting, Compression, Real time applications using Map Reduce, combiner, Partitioner, matrix multiplication using Map Reduce and page rank algorithm using Map Reduce.

UNIT-2

12L+0T+8P=20 Hours

PIG

Introduction to Pig, The Anatomy of Pig, Pig on Hadoop, Pig Philosophy, Use Case for Pig: ETL Processing, Pig Latin Overview, Data Types in Pig, Running Pig, Execution Modes of Pig, HDFS Commands, Relational Operators, Piggy Bank, Word Count Example using Pig, Pig at Yahoo!.

Hive: Introduction to Hive, Hive Architecture, Hive Data Types, Hive File Format, Hive Query Language (HQL), Partitions and bucketing, working with XML files, User-Defined Function (UDF) in Hive, Pig versus Hive.

Spark Programming: Introduction, features of Spark, components of Spark, Programming with Resilient Distributed datasets (RDDS).

PRACTICES:

- Word Count Map Reduce program using Hadoop.
- Implementation of word count with combiner Map Reduce program.
- Practice on Map Reduce Monitoring User Interface.
- Implementation of Sort operation using Map Reduce.
- Map Reduce program to count the occurrence of similar words in a file by using partitioner.
- Design Map Reduce solution to find the years whose average sales is greater than 30.
 - \circ input file format has year, sales of all months and average sales.
 - Year Jan Feb Mar April May Jun July Aug Sep Oct Nov Dec Average.
- Map Reduce program to find Dept wise salary.
 Empno Emp Name Dept Salary.
- Designing of Pig Latin scripts to sort, group, join, project and filter the data.
- Implementation of Word count using Pig.
- Creation of Database and tables using Hive query language.
- Implementation of partitions and buckets using Hive query language.
- Implementation of word count using spark RDD.

SKILLS:

- > Build and maintain reliable, scalable, distributed systems with Apache Hadoop
- > Develop Map Reduce based applications for Big data
- > Design and build applications using Hive and pig based Big data applications
- > Learn tips and tricks for big data use cases and solutions

COURSE OUTCOMES:

Upon successful completion of this course, students will have the ability to:

CO No.	Course Outcomes	Blooms Level	Module No.	Mapping with POs
1	Use of Big data frameworks like Hadoop and NOSQL to efficiently store and process Big data to generate analytics.	Apply	1	1, 2, 5,9,10,12
2	Design a solution for data intensive problems using Map Reduce paradigm.	Apply	1	1, 2, 5, 9,10,12
3	Design and analyze the solutions of Big data using Pig and Hive to solve data intensive and to generate analytics.	Apply	2	1, 2, 3, 5, 9,10,12
4	Analyze Big data using Spark programming	Analyze	2	1, 2, 3, 5, 9,10,12

TEXT BOOKS:

- 1. Seema Acharya, Subhashini Chellappan, "Big Data Analytics", Wiley, 2015.
- 2. Holden Karau, Andy Konwinski, Patrick Wendell, MateiZaharia, "Learning Spark: Lightning-Fast Data Analysis", O'Reilly Media, Inc., 2015.

REFERENCE BOOKS:

- 1. Boris Lublinsky, KevinT. Smith, Alexey Yakubovich, "Professional Hadoop Solutions", Wiley, 2015.
- 2. Chris Eaton, Dirk deRooset al., "Understanding Big data", McGraw Hill, 2012.
- 3. Tom White, "HADOOP: The definitive Guide", O Reilly 2012.

https://miro.medium.com/max/844/0*ARAg3FnAzy2e02Wy.png

22CS303–WEB TECHNOLOGIES

Hours	per	week:
-------	-----	-------

L	Т	Р	С
2	0	4	4

PREREQUISITE KNOWLEDGE: OOPs through JAVA.

COURSE DESCRIPTION AND OBJECTIVES:

This course offers the concepts of web development like static and dynamic web page design and provides internet programming knowledge, web servers, application servers, and design methodologies using objectoriented concepts. The objective of this course is to build web applications using JSP, PHP, Angular JS, and Node JS with a client and server-side scripting technologies that span multiple domains.

MODULE - 1

UNIT-1

INTRODUCTION

HTML: Creating structured documents, Links and navigation, Tables, Forms, and Frames.

HTML 5: Introduction to HTML5, The HTML5 Canvas, HTML5 audio and Video; **CSS:** Cascading Style Sheets, CSS Properties.

Java Script: Learning Java Script- how to add scripts to your page, DOM, variables, operators, functions, conditional statements, Looping, Events, Built-in objects, form and regular expression validation.

UNIT-2

8L+0T+16P=24 hours

JDBC AND JSP

JDBC: What is JDBC, system requirements, types of JDBC Drivers, creating database tables, connecting to a database, executing SQL statements, processing result sets, and making changes to a result set.

JSP: JSP Processing, Generating Dynamic Content using Scripting Elements, Implicit JSP Objects, Sharing Data between JSP pages, JSP application design with JDBC.

PRACTICES:

- Design a webpage having four frames named a)Top, b)Center, c)Bottom, and d) Left. The top frame should contain the company logo and title. The bottom frame should contain copyright information. The left frame should contain various links like Home, Products, Services, Branches, About, etc., When clicked on respective links, the content should display on the center frame.
- Design a catalog page that should contain the details of all the books available on the website in a table. The details should contain the following: a) Snapshot of Cover Page b) Author Name c) Publisher. d) Price. e) Add to cart button.
- Design a timetable schedule for your current semester using the Table tag.
- Design a HTML page for Student Registration Form using Form Elements that includes Form, inputtext,password,radio,checkbox,hidden,button,submit,reset,label,textarea,select,option and file upload.
- Design a HTML web page with at least two <h1>, two images, two buttons, and appropriate CSS to display,

8L+0T+16P=24 hours

- All<h1>withfont-size12pt, and bold in Verdana font using In line CSS.
- Allwith border color yellow, thickness 10pxusing Document Level CSS.
- All<inputtype='button'>shouldchangebackgroundcolortoredonmouseoverthemusing External CSS.
- Design a HTML page having a text box and four buttons viz Factorial, Fibonacci, Prime and Palindrome.
 When a button is pressed an appropriate java script function should be called to display the following:
 - Factorial of that number.
 - Fibonacci series up to that number.
 - Prime numbers up to that number.
 - Is it palindrome or not?
- Design a web page that contains a color pallet, when the user moves the mouse to the particular area, then it changes the background color of the web page.
 - Design a registration page to validate the following fields using Java Script.
 - Make sure the user name starts with an upper case letter
 - The user name must have at least one digit
 - Ensure that Email is valid
 - o Ensure that thepasswordlengthisbetween8to20characters
 - Make sure the password contains at least one upper case letter, one lower case, and one special character exclude [. (dot), ,(comma), ;(semicolon), : (colon)].
- Design a web page to display the videos on-page, on user selection using frames and HTML5 tags.
- Design a web page to display different types of objects using HTML5 Canvas.
- Design a web application to validate entered username and password through JDBC connection program and display user information on successful login and provide profile editing option to the user. Else display an error message.
- Develop a JSP application to create a user on successful signup and update user information on successful login and display user information on the home screen and provide a logout button.
- Make an HTML form that collects the last name. Send the name to JSP page. If there is an employee with that last name, show full details of him or her (just show the first employee if there are multiple people with the same name). If there is no employee with that last name, say "no employee records available."

MODULE-2

8L+0T+16P=24 hours

РНР

PHP: Introduction to PHP, Expressions, and control flow in PHP, functions and objects, Arrays, Accessing MySQL using PHP, Form Handling, Cookies, Sessions, and Authentication.

UNIT-2

8L+0T+16P=24 hours

ANGULAR AND NODE JS

Angular JS: Introduction, Expressions, Modules, Directives, Controllers, Filters, Events, Forms, Form Validation.

Node JS: Introduction, Setup Dev Environment, Modules, Node Package Manager, Creating Web server, File System, Events, Express.js, Accessing MySQL from Node.js.

PRACTICES:

UNIT-1

UN

- Design a web page using PHP, upload image into web page and display image, when user clicking on view button.
- Design a personal Information form, Submit & Retrieve the form data using \$_GET(), \$_POST() and \$_REQUEST() Variables.
- Design a login page to validate username and password through MySQL. If login is successful display user information on home page and modify user information on edit page using sessions. When user logged out, destroy all user-related sessions.
- Design a web page to accept payment data from user and do the payment, on successful payment display
 details on the screen. A Session should be set while doing payment up to 10 minutes after that link/payment
 page should be destroyed irrespective of user payment.
- Design a web application to validate user registration page using Angular JS.
- Design a search engine using Angular JS. On key press, display data on web page.
- Design a web page to validate user name and password using: Node.js and PHP. When user clicks on login button, server checks the data availability in data base. If the data matches a successful login page is returned. Otherwise, a failure message is shown to the user.
- Design a web application to display the active duration of the user, i.e., time between login and logout.

SKILLS:

- > Perform client-side validation using Java Script and Angular JS.
- Store and retrieve data using Node JS.
- > Generate dynamic web pages using JSP and PHP.
- > Develop a web application or website for any real-time requirements.

COURSE OUTCOMES:

Upon successful completion of this course, students will have the ability to

CO No.	Course Outcomes	Blooms Level	Module No.	Mapping with POs
1	Usage of HTML, HTML5, CSS, Java Script, and PHP in web application development.	Apply	1, 2	1
2	Apply Angular JS features for form validation and Node JS, and JDBC concepts to perform database operations from web pages.	Apply	1,2	1
3	Analyse the suitability of Node JS and JSP technologies to build solutions for real-world problems.	Analyse	2	2
4	Design and develop three tier web applications using JSP, Node JS, Angular JS, and PHP.	Creating	2	3

TEXT BOOKS:

- Jon Duckett, "Beginning Web Programming with HTML, XHTML, and CSS", 2nd Edition, Wiley Publishing, Inc, 2008.
- 2. Robin Nixon, "Learning PHP, MySQL & JavaScript WITH JQUERY, CSS & HTML5", 4th Edition, O'Reilly,

2015.

REFERENCEBOOKS:

- 1. Paul Deitel, Harvey Deitel, Abbey Deitel, "Internet & World Wide Web How to Program", 5th Edition, Pearson Education, 2012.
- 2. Kishori Sharon, "Java APIs, Extensions and Libraries with JavaFX, JDBC, jmod, jlink, Networking and the process API", 2nd Edition, Apress, 2018.
- 3. MartyHallandLarryBrown,"CoreServletsandJavaServerpagesVol.1:CoreTechnologies",2ndEdition, Pearson,2004.
- 4. Brad Dayley, Brendan Dayley, and Caleb Dayley, "Node.js, Mongo DB and Angular Web Development: The definitive guide to using the MEAN stack to build web applications," 2nd Edition, Pearson Education, 2018.
- 5. ManuelKiessling, "The Node Craftsman Book", Packt Publisher, 2017.
- 6. Larry Ullman, "PHP for the Web: Visual QuickStart Guide", 4th Edition, Pearson Education, 2011.
- Steve Prettyman, "Learn PHP 7 Object Oriented Modular Programming using HTML5, CSS3, JavaScript, XML, JSON, and MySQL", 1st edition, Apress, 2015.
- 8. Adrian W. West and Steve Prettyman, "Practical PHP 7, MySQL 8, and MariaDB Website Databases: A Simplified Approach to Developing Database-Driven Websites", 1st edition, A Press, 2018.

https://www.dreamstime.com/web-development-coding-programming-internet-technology-business-concept-web-development-coding-programming-internet-technology-image121903546

22CSXXX-AUGMENTED REALITY/VIRTUALREALITY

Hours per week:

L	Т	Р	С
3	0	2	4

PREREQUISITE KNOWLEDGE: Mathematics, Physics, Programming and Problem Solving, Engineering Graphics

COURSE DESCRIPTION AND OBJECTIVES:

- 1. Learn the fundamental Computer Vision, Computer Graphics and Human-Computer interaction Techniques related to VR/AR
- 2. Review the Geometric Modeling Techniques
- 3. Review the Virtual Environment
- 4. Discuss and Examine VR/AR Technologies
- 5. Use of various types of Hardware and Software in Virtual Reality systems
- 6. Simulate and Apply Virtual/Augmented Reality to varieties of Applications

MODULE-1

UNIT-1

8L+0T+8P=16 hours

INTRODUCTION TO VIRTUAL REALITY (VR)

Virtual Reality and Virtual Environment, Computer graphics, Real time computer graphics, Flight Simulation, Virtual environment requirement, benefits of virtual reality, Historical development of VR, Scientific Landmark

UNIT-2

16L+0T+8P=24 hours Computer

GRAPHICS AND GEOMETRIC MODELLING

The Virtual world space, positioning the virtual observer, the perspective projection, human vision, stereo perspective projection, Color theory, Conversion From 2D to 3D, 3D space curves, 3D boundary representation, Simple 3D modelling, 3D clipping, Illumination models, Reflection models, Shading algorithms, Geometrical Transformations: Introduction, Frames of reference, 47 | P a g e Modelling transformations, Instances, Picking, Flying, Scaling the VE, Collision detection

VIRTUAL ENVIRONMENT

Input/Output Devices: Input (Tracker, Sensor, Digital Gloves, Movement Capture, Videobased Input, 3D Menus & 3D Scanner, etc.), Output (Visual/Auditory/Haptic Devices) Generic VR system: Introduction, Virtual environment, Computer environment, VR technology, Model of interaction, VR Systems, Animating the Virtual Environment: Introduction, The dynamics of numbers, Linear and Nonlinear interpolation, the animation of objects, linear and non-linear translation, shape & object in between, free from deformation, particle system Physical Simulation: Introduction, Objects falling in a gravitational field, Rotating wheels, Elastic collisions, projectiles, simple pendulum, springs, Flight dynamics of an aircraft

PRACTICES:

- Case studies: AR in Retail
- Case studies: AR in Media and Entertainment
- Case studies: AR for Training and Education
- Case studies: AR in Manufacturing

SKILLS:

- Experience With Building Solutions
- A Basic Understanding of Extended Reality
- > An Understanding of Good User Experience Design

MODULE-2

UNIT-1

12L+0T+8P=20 hours

Augmented Reality (AR)

Taxonomy, Technology and Features of Augmented Reality, AR Vs VR, Challenges with AR, AR systems and functionality, Augmented Reality Methods, Visualization Techniques for Augmented Reality, Enhancing interactivity in AR Environments, Evaluating AR systems

UNIT-2

12L+8T+0P=20hours

Development Tools and Frameworks Human factors: Introduction, the eye, the ear, the somatic senses Hardware: Introduction, sensor hardware, Head-coupled displays, Acoustic hardware, Integrated VR systems Software: Introduction, Modelling virtual world, Physical simulation, VR toolkits, Introduction to VRML

AR / VR Applications Introduction, Engineering, Entertainment, Science, Training, Game Development **PRACTICES:**

- Case studies: <u>VR in the Automotive Industry</u>
- Case studies: <u>VR in Healthcare</u>
- Case studies: <u>VR in the Workplace</u>

SKILLS:

- ➢ 3D Animation and Modelling Skills.
- ➤ A Constantly-Updated View on Trends
- ➢ Final Thoughts

COURSE OUTCOMES:

Upon successful completion of this course, students will have the ability to:

CO	Course Outeomos	Blooms	Module	Mapping
No.	Course Outcomes	Level	No.	with POs

1	Understand Fundamental Computer Vision, Computer Graphics And Human Computer Interaction Techniques Related To VR/AR	Analyze	1	1,2
2	Understand geometric modeling techniques co3. Understand The Virtual Environment	Apply	1	1,2
3	Analyze And Evaluate VR/AR Technologies	Analyze	2	4,5
4	APPLY Various Types Of Hardware And Software In Virtual Reality Systems CO6. DESIGN And FORMULATE Virtual/Augmented Reality Applications	Evaluate	2	3,6

TEXT BOOKS:

- 1. Coiffet, P., Burdea, G. C., (2003), "Virtual Reality Technology," Wiley-IEEE Press, ISBN:9780471360896
- Schmalstieg, D., Höllerer, T., (2016), "Augmented Reality: Principles & Practice," Pearson,ISBN: 9789332578494
- Norman, K., Kirakowski, J., (2018), "Wiley Handbook of Human Computer Interaction," Wiley-Blackwell, ISBN: 9781118976135

REFERENCE BOOKS:

- 1. Craig, A. B., (2013), "Understanding Augmented Reality, Concepts and Applications," Morgan Kaufmann, ISBN: 9780240824086
- 2. Craig, A. B., Sherman, W. R., Will, J. D., (2009), "Developing Virtual Reality Applications, Foundations of Effective Design," Morgan Kaufmann, ISBN: 9780123749437
- 3. John Vince, J., (2002), "Virtual Reality Systems," Pearson, ISBN: 9788131708446
- 4. Anand, R., "Augmented and Virtual Reality," Khanna Publishing House Kim, G. J., (2005), "Designing Virtual Systems: The Structured Approach", ISBN: 9781852339586

22CS811–MOBILE APPLICATION DEVELOPMENT

L T	Р	С
-----	---	---

Hours per

2 0 4 4

week:

PREREQUISITE KNOWLEDGE: OOPs through Java, DDL & DML Commands – DBMS.

COURSE DESCRIPTION AND OBJECTIVES:

This course guides the student in designing and building a mobile application using AndroidTM. The main objective of this course is to let the student learn basic Android programming concepts while building a variety of apps, starting with basic to making use of advanced concepts.

MODULE-1

UNIT-1

8L+0T+16P=24Hours

INTRODUCTION

Introduction to Mobile Application Development- Mobile Applications and Device Platforms, Alternatives for Building Mobile Apps; Introduction to Android, Android versions, Android Architecture.

Application Development Process- Developers Workflow basics, Installing the Android SDK Tools; Anatomy of an Android Application.

Basic Building blocks - Activities, Services, Broadcast Receivers & Content providers; Intents & Fragments.

View Group- Layout: Linear Layout, Relative Layout, Frame Layout, Grid Layout, constraint Layout, Table Layout, and Absolute Layout.

UNIT-2

8L+0T+16P=24Hours

VIEWS

Views: Basic Views; **Picker Views-** Time Picker View, Data Picker View; **List Views –** List View, Spinner View; Scroll View.

Activities: Creating an activity, Understanding the activity life cycle using Log and Toast, applying styles and themes to an activity, and hiding the activity title.

Linking Activities using Intents: Introduction to Intents and its types with examples, passing data between activities with intents, Activity Navigation-Implement up navigation with parent activities.

Fragments: Introduction to Fragment, the life cycle of a fragment, Adding fragments dynamically, Interaction between fragments.

PRACTICES:

- Setting up Android Studio:
 - a. Installing Android Studio
 - b. Select an empty activity to simulate the "Welcome App" Using Android Studio.
 - c. Exploring the interface of the Android Studio to understand the Project Structure.
- Develop an Android application using controls like Button, TextView, and EditText for designing a calculator having basic functionality like Addition, Subtraction, Multiplication, and Division.
- Design the **HelloToast app**: The **HelloToast app** consists of two elements and one TextView. When the user taps the first Button, displays a short message (a Toast) on the screen. Tapping the Button increases a "click" counter displayed in the TextView, starts at zero.

 Design Silent Model Toggle application: This app allows the toggle the ringer mode on the phone by simply pressing a button.

- In this assignment, students will create and build an app called Two Activities. Students will build the app in four stages.
 - a. In the first stage, you create an app whose main activity contains one button, Send. When the user clicks this button, your main activity uses an intent to start the second activity.
 - b. In the second stage, you add an EditText view to the main activity. The user enters a message and clicks Send. The main activity uses an intent to start the second activity and sends the user's message to the second activity. The second activity displays the message received.

Message Received	
This is the message	
	This is the message

- c. In the final stage of creating the Two Activities app, you add an EditText and a Reply button to the second activity. The user can now type a reply message and tap Reply, and the reply is displayed on the main activity. At this point, you use an intent to pass the reply from the second activity to the main activity.
- d. Implement all the Activity lifecycle call back methods to print messages to logcat when those methods are invoked. These log messages will allow you to see when the Activity lifecycle changes state, and how those lifecycle state changes affect your app as it runs.

▼∎ 6:00 Two Activities	♥■ 6:00 ← Second Activity	Two Activities
	Message Received This is the message	Reply Received This is the reply
Enter Your Message Here SEND	Enter Your Reply Here REPLY	Enter Your Message Here SEND
Main activity	Second activity —	Back to Main activity

- Design an application with implicit intents: Create a new app with one Activity and three options for actions: open a website, open a location map, and share a snippet of text. All the text fields are editable (EditText) but contain default values.
- Design Droid Café: In this practical, the student will create and build app starting with the Basic Activity template that imitates a dessertordering app. The user can tap an image to perform an action—in this display a Toast message—as shown in the figure below. The user can tap a shopping cart button to proceed to the next Activity.
 - d. Experiment with the android: inputType attribute for EditText elements. You add EditText elements for a person's name and address and use attributes to define single-line and multiple-line elements that make suggestions as you enter text. You also add an EditText that shows a numeric keypad for entering a phone number.
- 2 6.00 Implicit Intents а าท http://developer.android.com OPEN WEBSITE a new Golden Gate Bridge case, OPEN LOCATION also 'Twas brillig and the slithy toves SHARE THIS TEXT \bigtriangledown 0
 - e. Other types of input controls include interactive elements that provide user choices. You add radio buttons to Droid Cafe for choosing only or
 - provide user choices. You add radio buttons to Droid Cafe for choosing only one delivery option from several options. You also offer a spinner input control for selecting the label (Home, Work, Other, Custom) for the phone number.

MODULE-2

UNIT-1

8L+0T+16P=24 hours

CREATING A FEATURE-RICH APPLICATION

Creating a Feature-Rich Application: Display Orientation – Anchor Views, resizing and repositioning Views, Managing changes to Screen Orientation; Notifications; Action bar; Dialog box; Adapters- Array Adapters and Base Adapters; Recycler View.

UNIT-2

8L+0T+16P=24 hours

SQLite DATABASE

SQLite Database – Creating the database, Dealing with CRUD;

Firebase- Getting Started with Firebase, Add Firebase to your Android project, Firebase database – Introduction to Firebase database, set up Firebase Real-time Database for Android, Read and Write Data on Android; **Publish the App in Play store.**

PRACTICES:

Design an application to keep data when the user rotates the device, and when the screen is rotated: When
the user rotates the device, Android will normally destroy and re-create the current Activity. You want to
keep some data across this cycle, but all the fields in your Activity are lost during it.

- Create a Splash Screen for the existing project- Droid Café from Module- 1.
- Design a News App- Consider the following screen as reference:

hese are the top stories:		News App	1
0	Top Stories	Tech News	Cooking
	Headline	Headline	Headline
2	Story Stor	ry Story	

NOTE: Use Recycle View to display the news under each category.

- Adding more features to Droid Café: In the previous assignments, you created an app called Droid Café, using the Basic Activity template. This template also provides a skeletal options menu in the app bar at the top of the screen.
 - a. Update that menu option as shown in the following
 - b. Add notification option: The app must notify the when the user places the order.
- Provide user authentication for the Droid Café using

Droid Cafe

···· · · 9:29

Settings

images:

user

preferences in the Firebase Real time Database to fetch whenever required.

SKILLS:

- Design mobile applications for user requirements.
- ▶ Use of suitable advanced components to design mobile apps.
- Utilization of activities, intents, layouts, and views for content.

COURSE OUTCOMES:

Upon completion of this course, the student will be able to:

CO No.	Course Outcomes	Blooms Level	Module No	POs
1	Apply views, intents, and fragments to an existing application.	Apply	1	2
2	Evaluate an existing app to enrich it with new features.	Evaluate	2	2,3
3	Analyse methods for storing, sharing, and retrieving data in an Android app.	Analyse	2	5

4	Design and publish a mobile app in the play store with a database forgiven real-time scenarios using modern tools- Android Studio, and Firebase.	Create	2	5,10	
---	---	--------	---	------	--

TEXT BOOKS:

- 1. John Horton "Android Programming for Beginners: Build in-depth, full-featured Android apps starting from zero programming experience", 3rd Edition, 2021.
- 2. Wei-Meng Lee, "Beginning Android Application Development", 1st Edition, John Wiley & Sons, 2012.

REFERENCE BOOKS:

- 1. Michael Burton," Android App Development for Dummies ", 3rd Edition, A Wiley Brand, 2020.
- 2. Dawn Griffiths & David Griffiths, "Headfirst Android Development A Brain-Friendly Guide" 2nd Edition, O'Reilly, 2015.
- 3. https://aws.amazon.com/mobile/mobile-application-development/
- 4. https://google-developer-training.github.io/android-developer-fundamentals-course-concepts/.

https://www.tatvasoft.com.au/blog/mobile-application-development-methodology/

CSXXXX-DESCRIPTIVE ANALYTICS FOR IOT

Hours per week:

PREREQUISITE KNOWLEDGE: Data Analytics in IoT

COURSE DESCRIPTION AND OBJECTIVES:

This course focuses on imparting knowledge on Identifying the Key opportunities and benefits in Industrial IoT. IoT Device Management refers to processes that involve registration, configuration and provisioning, maintenance and monitoring of connected devices

MODULE-1

UNIT-1

12L+0T+8P = 20 Hours

DATA ANALYTICS:

Introduction, Structured Versus Unstructured Data, Data in Motion versus Data at Rest, IoT Data Analytics Challenges, Data Acquiring, Organizing in IoT/M2M.

SUPPORTING SERVICES:

Computing Using a Cloud Platform for IoT/M2M Applications/Services, Everything as a service and Cloud Service Models.

UNIT-2

12L+0T+8P = 20 Hours

Defining IoT Analytics - IoT analytics for the cloud-Microsoft Azure overview- Designing data processing for analytics – Designing visual analysis for IoT data-Data science for IoT-Feature engineering with IoT data.

PRACTICES:

- Develop application for Smart Traffic that analyze the IoT data and predict the Traffic Jam.
- 2. Visualize the predicted output using Data Analytics tool. For above health care application perform analysis of user requirements for cloud optimization.

MODULE-2

12L+0T+8P = 20 Hours

IoT & CLOUD ANALYTICS:

IoT Analytics- Definition, Challenges, Devices, Connectivity protocols, data messaging protocols- MQTT, HTTP, CoAP, Data Distribution Services (DDS), IoT Data Analytics – Elastics Analytics Concepts, Scaling.

Cloud Analytics and Security, AWS / Azure /ThingWorx. Design of data processing for analytics, application of big data technology to storage, Exploring and visualizing data, solution for industry specific analysis problem.

UNIT-2

UNIT-1

VISUAL ANALYSIS:

6L+0T+6P = 12 Hours

Visualization and Dashboard – Designing visual analysis for IoT data- creating dashboard – creating and visualizing alerts – basics of geo-spatial analytics- vector based methods-raster based methods- storage of geo-spatial data processing of geo spatial data- Anomaly detection forecasting. Case study: pollution reporting problem.

PRACTICES:

- Implement pen test and identify the vulnerable device in your network using Kali Linux.
- Implement Password Guess attack after identifying vulnerable device using Kali Linux.

COURSE OUTCOMES:

CO No.	Course Outcomes	Blooms Level	Module No.	Mapping with POs
1	Demonstrate the working of IoT	Understand	1	1,2,3,4,5,12
2	Apply Machine Learning Algorithms for IoT data.	Apply	1	,2,3,5,12
3	Identify the Vulnerability in connected networks	Evaluation	2	1,2,3,4,5,12
4	Predict and visualize output using Data Analytic tools	Analyze	2	1,2,3,4,5,12
5	Develop a model to prevent an IoT connected network from a security threat.	Apply	2	1,2,3,5,12

Upon successful completion of this course, students will have the ability to:

TEXT BOOKS

- 1. Rajkumar Buyya, Amir Vahid Dastjerdi," Internet of Things: Principles and Paradigms", Elsevier, 2016.
- 2. Analytics for Internet of Things Andrew Minteer Packt Publications Mumbai 2017

REFERENCE BOOKS

1. R. Chandrasekaran," Essentials of Cloud computing", 2nd Edition, Chapman and Hall/CRC, 2015.

2. Big–Data Analytics for Cloud, IoT and Cognitive Computing Hardcover –by Kai Hwang (Author), Min Chen (Author).

https://www.fingent.com/blog/role-of-data-analytics-in-internet-of-things-iot/

CSXXXX–OPERATING SYSTEMS FOR IOT

Hours per week:

L	Т	Р	С
3	0	2	4

PREREQUISITE KNOWLEDGE: Operating Systems, Introduction to IoT.

COURSE DESCRIPTION AND OBJECTIVES:

Internet of Things (IoT) is presently a hot technology worldwide. Government, academia, and industry are involved in different aspects of research, implementation, and business with IoT. IoT cuts across different application domain verticals ranging from civilian to defense sectors. These domains include agriculture, space, healthcare, manufacturing, construction, water, and mining, which are presently transitioning their legacy infrastructure to support a loT. To introduce the terminology, technology and its applications, to introduce the concept of M2M (machine to machine) with necessary protocols.

MODULE-1

12L+8T+0P=20 hours

PROCESSES, TOOLS, TOOLCHAINS AND HARDWARE: Design to Code - A Practical Approach, The Stm32cube Software Tool, The Practical Tool Set, The Stm32 Graphical Tool- Stm32cube Mx Details, The Stm32cubehal, Free RTOS Configuration in A Cube Project, The Stm32cube Cubeide Development Platform.

UNIT-2 12L+8T+0P=20 hours INTRODUCING MICROPYTHON: Micropython Features, Micropython Limitations, What Does Micropython Run On?, Experimenting With Python On Your Pc, How Micropython Works, Off And Running With Micropython.

MODULE-2

12L+8T+0P=20 hours

Micropython Hardware: Getting Started with Micropython Boards, Micropython-Ready Boards, Networking with The Pyboard, Getting Started with Wipy, Connecting to Your Wifi Network, Micropython-Compatible Boards, Other Boards, Breakout Boards and Add-Ons.

UNIT-2

UNIT-1

How To Program In Micropython: Basic Concepts, Basic Data Structures, Statements, Modularization; Modules, Functions, And Classes, Learning Python By Example. Introducing the Windows 10 Iot Core: Windows 10 Iot Core Features, Things You'll Need, Getting Started with Windows 10 Iot Core.

SKILLS:

- Python programming skills
- ➢ IoT system design.
- > Tool usage for developing IoT applications.

COURSE OUTCOMES:

Upon successful completion of this course, students will have the ability to:

UNIT-1

12L+8T+0P=20 hours

CO No.	Course Outcomes	Blooms Level	Modu le No.	Mapping with POs
1	Analyse Free RTOS Techniques of Cube Software Tool.	Analyze	1	4, 6
2	Apply Micro Python Features.	Design	1	3
3	Design the networking using Micropython hardware.	Design	2	1
4	Apply Basic Data Structures and Functions of Micro Python	Apply	2	4
5	Analyze the Windows 10IoT core For Iot Operating System.	Analyze	2	4

TEXT BOOKS:

- Jim Cooling, Real-Time Operating Systems Book 2 The Practice: Using Stm Cube, Freertos And the Stm32 Discovery Board (Engineering of Real-Time Embedded Systems) Jim Cooling, Isbn-10: 1973409933, Isbn-13: 978-1973409939.
- 2. Charles Bell, Micropython For the Internet of Things, A Beginner's Guide to Programming with Python on Microcontrollers, Apress, Isbn-13 (Pbk): 978-1-4842-3122-7, Isbn-13 (Electronic): 978-1-4842-3123-4.
- 3. Charles Bell Windows 10 For the Internet of Things 1st Edition, Apress, Isbn-13 (Pbk): 978-1-4842-2107-5 Isbn-13, (Electronic): 978-1-4842-2108-2.

REFERENCE BOOKS:

- 1. Gerardus Blokdyk, IOT Operating Systems A Complete Guide, Isbn-10: 0655416471, ISBN13: 978-0655416470.
- 2. Klaus Elk, Embedded Software for The Iot, De Gruyter, Isbn: 9781547401048.

https://ubidots.com/blog/iot-operating-systems/